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1 Introduction: delayed responses, working memory, persistent
activity and all that

It starts with Fuster in 1973

A delayed-response trial typically consists of the presentation of one of two possible visual
cues, an ensuing period of enforced delay and, at the end of it, a choice of motor response
in accord with the cue. The temporal separation between cue and response is the principal
element making the delayed response procedure a test of an operationally defined short-term
memory function.

Reference: Fuster J. (1973) Unit Activity in Prefrontal Cortex During Delayed-Response Performance:
Neuronal Correlates of Transient Memory. J. Neurophys. 36: 61-78.
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Fuster’s paradigm

Figures 1 and 4 of Fuster (1973).

Other delayed activities are observed

Figure 6 of Fuster (1973).
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Figure 3 and Table 1 of Fuster (1973).

A “modern” version of Fuster’s paradigm

Adaptation of figures from Funahashi et al (1989) by Constantinidis et al (2018).
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References:

• S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic (1989) Mnemonic coding of visual space in
the monkey’s dorsolateral prefrontal cortex . J. Neurophys. 61: 341-349.

• Christos Constantinidis, Shintaro Funahashi, Daeyeol Lee, John D. Murray, Xue-Lian Qi, Min
Wang and Amy F.T. Arnsten (2018) Persistent Spiking Activity Underlies Working Memory Jour-
nal of Neuroscience 38 (32): 7020-7028.

A better view of the rasters

Funahashi et al (1989) Figure 3.
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An example of “inhibition” during the delay

Funahashi et al (1989) Figure 5.

Funahashi et al excitation / inhibition summary

Funahashi et al (1989) Figure 10.
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Changing the delay

Funahashi et al (1989) Figure 11.

What happens when mistakes are made?

Funahashi et al (1989) Figure 13.
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Parametric working memory

Romo et al (1999) title and figure 1a.

Reference: Romo, R., Brody, C., Hernández, A. et al. Neuronal correlates of parametric working
memory in the prefrontal cortex. Nature 399, 470–473 (1999). https://doi.org/10.1038/20939.

Part of Romo et al (1999) figure 2.
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First modelling efforts

Reference: Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neu-
rosci. 2001 Aug;24(8):455-63. doi: 10.1016/s0166-2236(00)01868-3.

Cellular substrate

Reference: Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P. S.
(2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience,
9(4), 534–542. doi:10.1038/nn1670.

This is not the whole story!

• NMDA receptors are also involved: Min Wang, Yang Yang, Ching-Jung Wang, Nao J. Gamo,
Lu E. Jin, James A. Mazer, John H. Morrison, Xiao-Jing Wang, Amy F.T. Arnsten (2013) NMDA
Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal
Cortex. Neuron, 77 (4): 736-749.

• Dopamine also plays a key role: MIN WANG, SUSHEEL VIJAYRAGHAVAN, PATRICIA S.
GOLDMAN-RAKIC (2004) Selective D2 Receptor Actions on the Functional Circuitry of Working
Memory. SCIENCE, 303: 853-856
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Figure 1 of Wang et al (2006).

Models with short term facilitation
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Reference: Omri Barak, Misha Tsodyks (2014) Working models of working memory, Current Opinion
in Neurobiology, 25: 20-24.
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Membrane conductances (ion channels) generate fluctuations

Figures 1 and 2 of Sigworth and Neher (1980). Reference: Sigworth, F. J., & Neher, E. (1980). Single

Na+ channel currents observed in cultured rat muscle cells. Nature, 287: 447-449.

Synapses generate even more fluctuations

Figure 1 of Pouzat and Marty (1998).

Reference: Pouzat, C., & Marty, A. (1998). Autaptic inhibitory currents recorded from interneurones
in rat cerebellar slices. The Journal of Physiology, 509(Pt 3), 777.
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2 Metastability
Metastability: general view

Metastability is a notion which initially came from statistical physics, and which has now been studied
in a wide range of fields to explain various phenomenons. Examples: Supercooling water, avalanche,
nuclear physics etc.

Informally a system is metastable if, under the right conditions,it tends to persist in a seemingly
stable (but in fact precarious) equilibrium for a long time, before falling into the actual equilibrium
because of an unusually big (but statistically unavoidable) deviation from this pseudo-equilibrium.

Metastability: a little bit more specific
In the specific field of interacting particle systems, metastability is characterized by the following two

properties (Cassandro et al. 1984):

• the time it takes for the system to get to the actual equilibrium (quiescent state) is asymptotically
memory-less,

• and before reaching this equilibrium the system behave as if it were in a stationary regime.

Reference: Cassandro, M.,& Galves, A., Olivieri, E.,& Vares, M.E. (1984). Metastable Dynamics of
Stocahstics Dynamics: A Pathwise Approach. Journal of Statistical Physics, Vol. 777.

3 Definition of the model
Definition

• The system consists in a finite set of N identical neurons.

• Each neuron is synaptically connected to all the others.

• Each neuron i ∈ {1, . . . N} is associated with a membrane potential denoted (Ui(t))t≥0, taking
value in N.

• There is a threshold θ ∈ N. If Ui(t) < θ neuron i cannot spike, while if Ui(t) ≥ θ it spikes at rate
β.

• When a neuron spikes its membrane potential is reset to zero. That’s the only way the membrane
potential can decrease.

• Each neuron i has a facilitation state evolving with t, we denote it (Fi(t))t≥0 and it takes value in
{0, 1}.

• If Fi(t) = 1 and a spike occurs at time t for neuron i, then the membrane potential of every neuron
is incremented by 1.

• If Fi(t) = 0 the spike has no post-synaptic effect.

• The facilitation state of a given neuron is set to 1 immediately after a spike has been emitted by
this neuron, then the facilitation is lost at rate λ.

• We are here modelling the sub-network of strongly interconnected pyramidal cells with facilitating
synapses described by Wang et al (2006) in the prefrontal cortex.
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In picture

Simulation with N = 50, β = 10, λ = 10 and θ = 5.

4 Empirical results
Simulations outline

Simulations are easily performed since the “global” network rate is constant between two successive
events (spike or facilitation loss). Our C code writes to disk:

# Simulation of a networks with 50 neurons
# Xoroshiro128+ PRNG seeds set at 20061001 and 19731004
# The initial max membrane potential was set to 50
# The initial probability for a synapse to be active was set to 0.750000
# Parameter theta = 5.000000
# Parameter beta = 10.000000
# Parameter lambda = 10.000000
# Simulation duration = 50.000000

# Spike time Total nb of spikes Neuron of origin
0.0012163964 1 11
0.0015877227 2 39
0.0021882591 3 4
0.0046765785 4 18
0.0065390698 5 33
...

Note: by global rate we mean the rate of the joint process: (Ui, Fi)i∈{1,...,N}.
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Tiny network example

Trajectory of an entire system composed of 30 neurons, with λ = 5, β = 10 and θ = 5. The initial
probability for the synapses to be active was 0.75, the initial membrane potentials were drawn uniformly
on {0, 1, . . . , 29}.

Increasing λ

Observed counting processes of a network made of 50 neurons with increasing values of λ from 1 to 9.
In black, “top to bottom”, λ ∈ {1, 2, . . . , 6}; in red, λ > 6.
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Survival time distribution

Empirical survival functions for 1000 replicates with θ = 5, λ = 6 (blue and red), λ = 7 (black) and λ = 5
(orange), β = 10 and a network with 50 neurons. The initial probability for the synapses to be active
was 0.75, the initial membrane potentials were drawn uniformly on {0, 1, . . . , 49}. All simulations except
the blue and red start from the same random initial state. A log scale is used for the ordinate.

Survival time when λ is “too” large

Empirical survival functions for 1000 replicates with λ = 15 (blue), λ = 30 (green), λ = 60 (orange),
β = 10 and a network with 50 neurons. The initial probability for the synapses to be active was 0.75,
the initial membrane potentials were drawn uniformly on {0, 1, . . . , 49}. All simulations start from the
same random initial state.

On the left side the empirical survival function are computed from raw datas, whereas on the right
side the data are renormalized (divided by the mean). A log scale is used for the ordinate. The red
line on the right side corresponds to the function t 7→ e−t. The survival functions doesn’t seem to follow
any exponential distribution here.
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5 Mean-field analysis
What can we do, what do we want?

• We cannot yet prove that the metastable state exists.

• We will therefore postulate that it does: that’s what the simulations show.

• We will use the intrinsic symmetry of the model: the neurons are all equivalent.

• We will try to get network properties in the metastable state:

– network firing rate

– number of neurons in each state

– number of facilitated synapses

– . . .

from the 4 network parameters: N , θ, β, λ.

Notations and remarks

• We have (Ui(t))t≥0 ∈ N, but from the network dynamics what matters is to know whether Ui(t) ≥ θ
or not.

• We then have to consider θ + 1 different states for Ui(t): {0, 1, . . . , θ − 1,≥ θ}, that is, θ states
below threshold and 1 state above.

• Let us write

– Ni(t) for i ∈ {0, 1, . . . , θ − 1} the number of neurons whose membrane potential equals i

– Nθ(t) the number of neurons whose membrane potential is ≥ θ

at time t.

• We obviously have:
∑θ
i=0Ni(t) = N at all times.

• Then under our assumption of quasi-stationarity, the expectations of the Ni should be almost con-
stant in the metastable phase.

• Thus we let µ0, µ1, . . . µθ be the constants such that E(N0(t)) ≈ µ0, . . . , E(Nθ(t)) ≈ µθ, where t
is any time before the extinction of the system.

Another key quantity

• If we manage to compute µθ, we know the approximate network rate at anytime (before extinction):
νN = µθβ.

• In our model, when neuron j spikes at time s we have Fj(s+) = 1, the question is:

• if the next spike of j happens at time s+ τ , do we still have Fj(s+ τ) = 1?

• By our model definition and our quasi-stationarity assumption we have: E [Fj(s+ τ)|τ ] = e−λτ .

• We introduce now our second “key” quantity:

µE = E
(
e−λτ

)
,

where the expectation is taken with respect to the unknown distribution of the conditioning rv T
whose realization is τ .

• µE is the “mean probability” that the synapse is still facilitated when the neuron spikes.
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Circulation among U states

• Remark that µE allows us to define the rate of “effective” spikes (spikes that have a post-synaptic
effect): µθβµE .

• Stationarity means that the rate at which neurons leave membrane potential state i ∈ {0, 1, . . . , θ−
1,≥ θ} must equal the rate at which neurons enter that state.

• For i ∈ {1, . . . , θ − 1} this translates into:

(µθβµE)µi = (µθβµE)µi−1 ,

that is:
µ0 = µ1 = · · · = µθ−1 .

• For the two extrem states, we have:

(µθβµE)µ0 = µθβ ,

leading to
µ0 = 1/µE .

• But we have:
θ−1∑
i=0

µi + µθ = N .

• Using the equality of the µi for i < θ and our last equality (µ0 = 1/µE), yields:

µθ = N − θ

µE
.

• We see that is µE increases, so does µθ and therefore νN = µθβ, the network spike rate.

• We can also obtain a new expression for the rate of “effective” spikes:

µθβµE =

(
N − θ

µE

)
βµE = β(µEN − θ) .

Getting an implicit equation for µE

• In the metastable state, a neuron leaves a membrane potential state below threshold at rate:
β(µEN − θ).

• That neuron must go through a succession of θ states to reach threshold, the distribution of the
time to reach threshold is therefore an Erlang distribution with parameters θ and β(µEN − θ) and
its mean value is:

θ

β(µEN − θ)
.

• Once threshold has been reach, the rate at which a spike is generated is β so the interval between
two successive spikes of a given neuron is approximately

T ≈ θ

β(µEN − θ)
+ Y ,

where Y is an exponential random variable with rate parameter β.
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• Remember that µE = E [exp(−λT )].

• We therefore have:

µE ≈
∫ ∞
0

exp

[
−λ
(

θ

β(µEN − θ)
+ y

)]
β exp(−βy)dy ,

that is
µE ≈

[
exp

(
− λθ

β(µEN − θ)

)] ∫ ∞
0

β exp (−(λ+ β)y) dy .

• Leading to:

µE ≈
β

λ+ β
exp

(
− λθ

β(µEN − θ)

)
.

• This is an implicit equation we must solve for µE.

Remarks

• We can do better than that and work with the distribution of the Erlang random variable–giving
the time spent below threshold—instead of the mean of the latter as we just did.

• This requires a numerical integration whose precision we can check.

• Looking at:

µE ≈
β

λ+ β
exp

(
− λθ

β(µEN − θ)

)
,

we see that the right hand side is a decreasing function of λ, so if λ is too large the equation could
have no solution implying that there is no metastable state as we saw in the simulations.

Graphical solution of the implicit equation

Example with N = 50, θ = 6, β = 10, λ = 6.
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Comparison between mean-field solution and simulations
The implicit equation solution gives:

With N=500, beta=10.0, lambda=6.0, theta=51 we get:
[...]
mu_E = 0.54435,
nu_N = 4063.10,
mu_theta = 406.31,
mu_A = 308.56.

One numerical simulation gives:

Dealing with sim_n500_u50_f0p75_b10_l6_sim1_neuron:
[...]
*** Network level statistics ****
Ignoring 10 time unit(s) at both ends we get:

nu_N = 4056.3, with a 95% CI of [4045.4,4067.3].
The mean nb of neurons above threshold is: 405.861
The mean nb of active synapse is: 308.909

6 Conclusion and perspective
A conclusion for the mathematicians in the room

Remains the question of whether or not it is possible to establish rigorous results for this model, and
if so how to do it?

Asymptotic memorylessness
If you write τN for the time of extinction of a system containing N neurons, the standard way to

obtain the asymptotic memorylessness is to show:

lim
N→∞

∣∣∣∣P( τNβN > s+ t

)
− P

(
τN
βN

> s

)
P
(
τN
βN

> t

)∣∣∣∣ = 0,

where βN is some time scale satisfying E (τN ) ∼
N→∞

βN .

See for example: Cassandro et al. (1984) Andre (2019) Andre and Planche (2021)
References: Cassandro, M.,& Galves, A., Olivieri, E.,& Vares, M.E. (1984). Metastable Dynamics of

Stochastic Dynamics: A Pathwise Approach. Journal of Statistical Physics, Vol. 35.
André, M. (2019). A Result of Metastability for an Infinite System of Spiking Neurons. Journal of

Statistical Physics, Vol. 177.
André, M.,& Planche, L. (2021). The Effect of Graph Connectivity on Metastability in a Stochastic

System of Spiking Neurons. Stochastic Processes and their Applications, Vol. 131.
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Asymptotic memorylessness
In the setting of André and Planche (2021), which is close to our model, a simple technique is to

consider only the number of active neurons at any time t.

This is a (continuous time) Markov chain → compute the invariant measure explicitly → use it to
conclude.

Asymptotic memorylessness
This technique is NOT applicable here.

Indeed if for any t ≥ 0 we write X(t) for the number of neurons above the threshold in our model,
then (X(t))t≥0 is not a Markov chain.

An alternative approach would to define (X(t))t≥0 as the process that gives the count of neurons for
each possible value of the membrane potential.

Asymptotic memorylessness
That is, for any t ≥ 0

X(t) =
(
X0(t), X1(t), . . . , Xθ−1(t), X

F
θ (t), X

NF
θ (t)

)
.

with

Xi(t) =

N∑
j=1

1{Uj=i} for i ∈ {0, . . . θ − 1},

and

XF
θ (t) =

N∑
j=1

1{Uj=θ,Fj=1},

XNF
θ (t) =

N∑
j=1

1{Uj=θ,Fj=0}.

Then (X(t))t≥0 is a Markov chain on {0, . . . N}θ+2, but it is also far less tractable than the previous
case...
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Pseudo stationarity
Remains the question of how to give a precise mathematical formulation of the second point in the

characterization of metastability.

A standard way of expressing this pseudo-stationarity is as follows (see Cassandro et al. 1984). Let
(ξN (t))t≥0 be the state of a stochastic system taking values in some state space XN .

Then prove that there is a non trivial measure µ on XZ, invariant for the infinite counterpart of the
system, and which correspond to the weak limit of (ξN (t))t≥0 when N goes to ∞.

Finally prove that, for any suitable f : XZ 7→ R, we have

1

R

∫ s+R

s

f(ξN (t))dt ≈
∫
fdµ.

Pseudo stationarity

Problem: a sequence of complete graphs doesn’t preserve the local structure!

The end
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