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1 Introduction: delayed responses, working memory, persistent
activity and all that

It starts with Fuster in 1973

A delayed-response trial typically consists of the presentation of one of two possible visual
cues, an ensuing period of enforced delay and, at the end of it, a choice of motor response
in accord with the cue. The temporal separation between cue and response is the principal
element making the delayed response procedure a test of an operationally defined short-term
memory function.

Reference: Fuster J. (1973) Unit Activity in Prefrontal Cortex During Delayed-Response Performance:
Neuronal Correlates of Transient Memory. J. Neurophys. 36: 61-78.



Fuster’s paradigm
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¥ic. 4. Unit of type D during five delayed-response trials with 32.sec delay. Spikes are represented by
vertical lines in a graphic display ebtained by computer method. The notation next to the arrow at the
end of ecach trial's delay refers to the accuracy (C, correet; 1, incorrect) and side (R, right; L, left) of the
response. The series of single-trial records in this figure—as in subsequent figures—is made of records from
consecutive trials.

Fic. 1. Diagram of an experimental animal in
the testing apparatus,

Figures 1 and 4 of Fuster (1973).

Other delayed activities are observed
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FiG, 6. Unit of type C. Note absence of sustained activation on dry-run trials (ilth and seventh).

Figure 6 of Fuster (1973).
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Figure 3 and Table 1 of Fuster (1973).
A “modern” version of Fuster’s paradigm
A. Recording area B. ODR Task
Fixation

C. Delay cell with persistent firing
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Classification of unils in
prefrontal cortex by firing changes
during delayed-response performance

No. of Units Percent

20 6.1
30 11.9
110 33.5
55 16.8
15 4.6
25 7.6
G4 10.5

328 100.0

Delay

Response

l

Adaptation of figures from Funahashi et al (1989) by Constantinidis et al (2018).



References:

e S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic (1989) Mnemonic coding of visual space in
the monkey’s dorsolateral prefrontal cortex/. J. Neurophys. 61: 341-349.

e Christos Constantinidis, Shintaro Funahashi, Daeyeol Lee, John D. Murray, Xue-Lian Qi, Min
Wang and Amy F.T. Arnsten (2018) Persistent Spiking Activity Underlies Working Memory Jour-
nal of Neuroscience 38 (32): 7020-7028.

A better view of the rasters
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Funahashi et al (1989) Figure 3.


https://journals.physiology.org/doi/abs/10.1152/jn.1989.61.2.331?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
https://journals.physiology.org/doi/abs/10.1152/jn.1989.61.2.331?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
https://www.jneurosci.org/content/38/32/7020

An example of “inhibition” during the delay
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Funahashi et al (1989) Figure 5.
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Funahashi et al excitation / inhibition summary

Funahashi et al (1989) Figure 10.
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FIG. 10, The time course of excitatory
and inhibitory delay penod activity. These
histograms sum neural activity at the pre-
ferred cue direction for all 46 principal
sulcus neurons with excitatory directional
delay period activity (4, #) and all 23
principal sulcus neurons with inhibitory
directional delay period activity (C D). A4
and (" were aligned at the cue presenta-
tion; Band D were aligned at the initiation
of the saccadic eye movements. All delay
periods were 3 s,



Changing the delay
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Funahashi et al (1989) Figure 11.

What happens when mistakes are made?
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Funahashi et al (1989) Figure 13.
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Parametric working memory

Neuronal correlates of MWW AN

parametric working memory < 500 ms >
in the prefrontal cortex PD KD Base Comparison KU PB

Ranulfo Romo, Carlos D. Brody, Adrian Hernandez
& Luis Lemus

Instituto de Fisiologia Celular, Universidad Nacional Autonoma de México,
México DLF 04510, Méxice

Romo et al (1999) title and figure 1la.

Reference: Romo, R., Brody, C., Hernandez, A. et al. Neuronal correlates of parametric working
memory in the prefrontal cortex. Nature 399, 470-473 (1999). https://doi.org,/10.1038/20939.
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Part of Romo et al (1999) figure 2.


https://www.nature.com/articles/20939
https://www.nature.com/articles/20939

First modelling efforts

Synaptic reverberation underlying
mnemonic persistent activity

Xiao-Jing Wang

Stimulus-specific persistent neural activity is the neural process underlying persistent activity to subserve working memory, it
active (working) memory. Since its discovery 30 years ago, mnemonic activity must be stimulus-selective, and therefore information-
has been hypothesized to be sustained by synaptic reverberation in a recurrent  apecific. Morcover, it must be able to be turned on and
circuit. Recently, experimental and modeling work has begun to test the switched off rapidly (=100 ms) by transient inputs,
reverberation hypothesis at the cellular level, Moreover, theory has been For 30 years, persistent activity in the cortex has
developed to describe memory storage of an analog stimulus (such as spatial been documented by numerous unit recordings from
location or eye position), in terms of continuous ‘bump attractors’ and ‘line behaving monkeys during working memory tasks
attractors. This review summarizes new studies, and discusses insights and (Box 1), How does stimulus-selective persistent
predictions from biophysically based models. The stability of a working activity arise in aneural network? Can we explain
memaory network is recognized as a serious problem; stability can be achieved persistent activity in terms of the biophysics of

it reverberation is largely mediated by NMDA receptors at recurrent synapses. neurons and synapses, and circoit connectivity”?

Reference: Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neu-
rosci. 2001 Aug;24(8):455-63. doi: 10.1016/s0166-2236(00)01868-3.

Cellular substrate

Heterogeneity in the pyramidal network of the
medial prefrontal cortex

Yun Wang', Henry Markram?, Philip H Goodman®, Thomas K Berger?, Junying Ma' &
Patricia S Goldman-Rakic*>

The prefrontal cortex is specially adapted to generate persistent activity that outlasts stimuli and is resistant to distractors,
presumed to be the basis of working memory. The pyramidal network that supports this activity is unknown. Multineuron patch-
clamp recordings in the ferret medial prefrontal cortex showed a heterogeneity of synapses interconnecting distinct subnetworks
of different pyramidal cells. One subnetwork was similar to the pyramidal network commonly found in primary sensory areas,
consisting of accommodating pyramidal cells interconnected with depressing synapses. The other subnetwork contained complex
pyramidal cells with dual apical dendrites displaying nonaccommodating discharge patterns; these cells were hyper-reciprocally
connected with facilitating synapses displaying pronounced synaptic augmentation and post-tetanic potentiation. These cellular,
synaptic and network properties could amplify recurrent interactions between pyramidal neurons and support persistent activity in
the prefrontal cortex.

Reference: Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P. S.
(2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience,
9(4), 534-542. d0i:10.1038,/un1670.

This is not the whole story!

e NMDA receptors are also involved: Min Wang, Yang Yang, Ching-Jung Wang, Nao J. Gamo,
Lu E. Jin, James A. Mazer, John H. Morrison, Xiao-Jing Wang, Amy F.T. Arnsten (2013) NMDA
Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal
Cortex. Neuron, 77 (4): 736-749.

e Dopamine also plays a key role: MIN WANG, SUSHEEL VIJAYRAGHAVAN, PATRICIA S.
GOLDMAN-RAKIC (2004) |Selective D2 Receptor Actions on the Functional Circuitry of Working
Memory. SCIENCE, 303: 853-856


https://doi.org/10.1016/S0166-2236(00)01868-3
https://doi.org/10.1038/nn1670
https://doi.org/10.1016/j.neuron.2012.12.032
https://doi.org/10.1016/j.neuron.2012.12.032
https://doi.org/10.1016/j.neuron.2012.12.032
https://science.sciencemag.org/content/303/5659/853
https://science.sciencemag.org/content/303/5659/853
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Figure 1 of Wang et al (2006).

Models with short term facilitation

ELSEVIER

b 10 Hz ’

-
E
=
P
=
O I N A T |
—
200 s 2
20 Hz =
T TRTTTY S N
ms
30 Hz
TR L "
200 ms
50 Hz
w0 L
200 m&
=
c z
£ 12
§
&
D 1,04
w
h-] o 1 H.
FILER ey
? - 20 Hz
£ J - z0Hz
LRaaEs T I =
o 1234656 7 8
s EPSF order
d 14
=
z 12
2 1p
L3
é‘: 0.8
& os
0.4 ———

0 10 20 30 40 50 &0 7O
Presymaptic frequency (Hz)

Available online at www.sciencedirect.com

ScienceDirect

Working models of working memory

Omri Barak' and Misha Tsodyks?

Working memory is a system that maintains and manipulates
information for several seconds during the planning and
execution of many cognitive tasks. Traditionally, it was believed
that the neuronal underpinning of working memory is stationary
persistent firing of selective neuronal populations. Recent
advances introduced new ideas regarding possible
mechanisms of working memory, such as short-term synaptic
facilitation, precise tuning of recurrent excitation and inhibition,
and intrinsic network dynamics. These ideas are motivated by
computational considerations and careful analysis of
experimental data. Taken together, they may indicate the
plethora of different processes underlying working memary in
the brain.

activity related o storing a fixed item is not stationary,
and there is a large heterogeneity in the firing profiles of
different neurons [3,4,5%,6]. From the computational side,
the nerwork activity representing a memorized item
should exhibit a sufficient degree of stability to ensure
memory retainment. This requirement is especially chal-
lenging for storing continuous variables, such as orien-
tation or spatial position of a visual cue, because of an
inevitable drift along the variable's representation.
Furthermore, integrating the various data-driven chal-
lenges in a self-consistent manner is often a non-trivial
computational problem.

10



Reference: Omri Barak, Misha Tsodyks (2014) Working models of working memory, Current Opinion
in Neurobiology, 25: 20-24.

11


https://doi.org/10.1016/j.conb.2013.10.008

Membrane conductances (ion channels) generate fluctuations
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Figures 1 and 2 of Sigworth and Neher (1980). Reference: Sigworth, F. J., & Neher, E. (1980). Single
Na+ channel currents observed in cultured rat muscle cells. Nature, 287: 447-449.

Synapses generate even more fluctuations
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Figure 1 of Pouzat and Marty (1998).

Reference: Pouzat, C., & Marty, A. (1998). Autaptic inhibitory currents recorded from interneurones
in rat cerebellar slices. The Journal of Physiology, 509(Pt 3), 777.
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2 Metastability

Metastability: general view

Metastability is a notion which initially came from statistical physics, and which has now been studied
in a wide range of fields to explain various phenomenons. Examples: Supercooling water, avalanche,
nuclear physics etc.

Informally a system is metastable if, under the right conditions,it tends to persist in a seemingly
stable (but in fact precarious) equilibrium for a long time, before falling into the actual equilibrium
because of an unusually big (but statistically unavoidable) deviation from this pseudo-equilibrium.

Metastability: a little bit more specific
In the specific field of interacting particle systems, metastability is characterized by the following two
properties (Cassandro et al. 1984):

e the time it takes for the system to get to the actual equilibrium (quiescent state) is asymptotically
memory-less,

e and before reaching this equilibrium the system behave as if it were in a stationary regime.

Reference: Cassandro, M.,& Galves, A., Olivieri, E.,& Vares, M.E. (1984). Metastable Dynamics of
Stocahstics Dynamics: A Pathwise Approach. Journal of Statistical Physics, Vol. T77.

3 Definition of the model

Definition
e The system consists in a finite set of N identical neurons.
e Each neuron is synaptically connected to all the others.

e Each neuron ¢ € {1,... N} is associated with a membrane potential denoted (U;(t))i>0, taking
value in N.

e There is a threshold 6 € N. If U;(¢) < 6 neuron 4 cannot spike, while if U;(t) > 6 it spikes at rate
B.

e When a neuron spikes its membrane potential is reset to zero. That’s the only way the membrane
potential can decrease.

e Each neuron i has a facilitation state evolving with ¢, we denote it (F;(t)):>0 and it takes value in

{0,1}.

e If F;(t) = 1 and a spike occurs at time ¢ for neuron ¢, then the membrane potential of every neuron
is incremented by 1.

e If F;(t) = 0 the spike has no post-synaptic effect.

e The facilitation state of a given neuron is set to 1 immediately after a spike has been emitted by
this neuron, then the facilitation is lost at rate .

e We are here modelling the sub-network of strongly interconnected pyramidal cells with facilitating
synapses described by Wang et al (2006) in the prefrontal cortex.

13



In picture
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Simulation with N =50, 8 =10, A =10 and 6 = 5.

4 Empirical results

Simulations outline ) ] )
Simulations are easily performed since the “global” network rate is constant between two successive

events (spike or facilitation loss). Our C code writes to disk:

# Simulation of a networks with 50 neurons

# Xoroshiro128+ PRNG seeds set at 20061001 and 19731004
# The initial max membrane potential was set to 50

# The initial probability for a synapse to be active was set to 0.750000
# Parameter theta = 5.000000

# Parameter beta = 10.000000

# Parameter lambda = 10.000000

# Simulation duration = 50.000000

# Spike time Total nb of spikes Neuron of origin
0.0012163964 1 11
0.0015877227 2 39
0.0021882591 3 4
0.0046765785 4 18
0.0065390698 5 33

Note: by global rate we mean the rate of the joint process: (Ui, F)icq1,... . N}-

14



Tiny network example
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Trajectory of an entire system composed of 30 neurons, with A = 5, § = 10 and § = 5. The initial

probability for the synapses to be active was 0.75, the initial membrane potentials were drawn uniformly
on {0,1,...,29}.

Increasing A

25000 . T . . .

20000 + .

15000 + .

10000 + .

Total number of spikes

5000 r .

O I 1 I I I
0 10 20 30 40 50 60

Time

Observed counting processes of a network made of 50 neurons with increasing values of A from 1 to 9.
In black, “top to bottom”, A € {1,2,...,6}; in red, A > 6.



Survival time distribution

1

01 ¢

Fraction still active

0.01 i i i ‘ i ‘
0 20 40 60 80 100 120 140

Survival time
Empirical survival functions for 1000 replicates with = 5, A = 6 (blue and red), A = 7 (black) and A =5
(orange), 8 = 10 and a network with 50 neurons. The initial probability for the synapses to be active

was 0.75, the initial membrane potentials were drawn uniformly on {0, 1,...,49}. All simulations except
the blue and red start from the same random initial state. A log scale is used for the ordinate.

Survival time when )\ is “too” large

0.1

Fraction still active

0.01

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.5 1.0 1.5 2.0 2.5
Survival time Renormalized survival time

Empirical survival functions for 1000 replicates with A = 15 (blue), A = 30 (green), A = 60 (orange),
B = 10 and a network with 50 neurons. The initial probability for the synapses to be active was 0.75,
the initial membrane potentials were drawn uniformly on {0,1,...,49}. All simulations start from the
same random initial state.

On the left side the empirical survival function are computed from raw datas, whereas on the right
side the data are renormalized (divided by the mean). A log scale is used for the ordinate. The red
line on the right side corresponds to the function ¢ — e~t. The survival functions doesn’t seem to follow
any exponential distribution here.
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5 Mean-field analysis

What can we do, what do we want?

We cannot yet prove that the metastable state exists.

We will therefore postulate that it does: that’s what the simulations show.

We will use the intrinsic symmetry of the model: the neurons are all equivalent.
We will try to get network properties in the metastable state:

— network firing rate
— number of neurons in each state

— number of facilitated synapses

from the 4 network parameters: N, 6, 3, A.

Notations and remarks

We have (U;(t)):>0 € N, but from the network dynamics what matters is to know whether U;(t) > 6
or not.

We then have to consider 6 + 1 different states for U;(t): {0,1,...,0 —1,> 0}, that is, 0 states
below threshold and 1 state above.

Let us write

— N;(t) for i € {0,1,...,0 — 1} the number of neurons whose membrane potential equals i

— Np(t) the number of neurons whose membrane potential is > 6
at time ¢.
We obviously have: Zf:o N;(t) = N at all times.

Then under our assumption of quasi-stationarity, the expectations of the N; should be almost con-
stant in the metastable phase.

Thus we let ug, i1, . . . 1o be the constants such that E(Ny(t)) =~ po, ..., E(Ng(t)) ~ g, where ¢
is any time before the extinction of the system.

Another key quantity

If we manage to compute 119, we know the approximate network rate at anytime (before extinction):
UN = pof.

In our model, when neuron j spikes at time s we have F;(s+) = 1, the question is:
if the next spike of j happens at time s+ 7, do we still have F;(s+ 1) =17
By our model definition and our quasi-stationarity assumption we have: E [Fj(s + 7)|7] = e 7.
We introduce now our second “key” quantity:
pp =E(e7),

where the expectation is taken with respect to the unknown distribution of the conditioning rv T
whose realization is 7.

pE is the “mean probability” that the synapse is still facilitated when the neuron spikes.

17



Circulation among U states

e Remark that pg allows us to define the rate of “effective” spikes (spikes that have a post-synaptic
effect): pgfSug.

e Stationarity means that the rate at which neurons leave membrane potential state i € {0,1,...,0—
1,> 0} must equal the rate at which neurons enter that state.

e Fori e {1,...,0 — 1} this translates into:

(moBue)pwi = (HoBpe)pi-1,

that is:
Bo=p1 ="+ = lo—1-

e For the two extrem states, we have:

(HoBrE) o = 1o,

leading to
to =1/pg .

e But we have:

0—1
ZM‘ +pe =N.
i=0

e Using the equality of the u; for i < 6 and our last equality (uo = 1/pug), yields:

0
po=N— —.
HE

e We see that is pup increases, so does pg and therefore vy = pgf3, the network spike rate.

e We can also obtain a new expression for the rate of “effective” spikes:

;me—(N9>mm—ﬂmENm.
HE

Getting an implicit equation for ug

e In the metastable state, a neuron leaves a membrane potential state below threshold at rate:
BlpueN —0).

e That neuron must go through a succession of 6 states to reach threshold, the distribution of the
time to reach threshold is therefore an Erlang distribution with parameters § and S(ugN — 6) and
its mean value is:

v
B(ueN —0) "

e Once threshold has been reach, the rate at which a spike is generated is 8 so the interval between
two successive spikes of a given neuron is approximately

0
Tw—" 4y,
B(ueN —0)

where Y is an exponential random variable with rate parameter 3.

18



Remember that ug = E [exp(—AT)].

‘We therefore have:

o0 0
HE ~ \/0 exp |:A <ﬁ(/,LE]V—9) + y):| ﬁexp(fﬁy)dy,

pE =~ [exp <_ﬂ(,u;\]\0f—0)>] /Oooﬁexp(—(k+ﬂ)y) dy.

that is

Leading to:

P o (_W)
HEENT B8P BueN—0) )

This is an tmplicit equation we must solve for ug.

Remarks

e We can do better than that and work with the distribution of the Erlang random variable-giving
the time spent below threshold—instead of the mean of the latter as we just did.

e This requires a numerical integration whose precision we can check.
e Looking at:

L B (_M>
HEENT B8P\ " BueN —0) )

we see that the right hand side is a decreasing function of A, so if A is too large the equation could
have no solution implying that there is no metastable state as we saw in the simulations.

Graphical solution of the implicit equation

055 - .

045 .

035 1

03 .

025 1

Prob. of acive synpase upon spike

0.2 - .

015 - .

015 02 025 03 035 04 045 05 055

Prob. of acive synpase upon spike

Example with N =50, 6 =6, 5 =10, A = 6.
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Comparison between mean-field solution and simulations
The implicit equation solution gives:

With N=500, beta=10.0, lambda=6.0, theta=51 we get:

[...]

mu_E = 0.54435,
nu_N = 4063.10,
mu_theta = 406.31,
mu_A = 308.56.

One numerical simulation gives:

Dealing with sim_n500_u50_fO0p75_b10_16_siml_neuron:
[...]
**x Network level statistics ***x*
Ignoring 10 time unit(s) at both ends we get:

nu_N = 4056.3, with a 95% CI of [4045.4,4067.3].
The mean nb of neurons above threshold is: 405.861
The mean nb of active synapse is: 308.909

6 Conclusion and perspective

A conclusion for the mathematicians in the room
Remains the question of whether or not it is possible to establish rigorous results for this model, and
if so how to do it?

Asymptotic memorylessness
If you write 7y for the time of extinction of a system containing N neurons, the standard way to
obtain the asymptotic memorylessness is to show:

. ™N TN TN _

where Sy is some time scale satisfying E (7n) ~ Sn.
N—o0

See for example: Cassandro et al. (1984) Andre (2019) Andre and Planche (2021)

References: Cassandro, M.,& Galves, A., Olivieri, E.,& Vares, M.E. (1984). Metastable Dynamics of
Stochastic Dynamics: A Pathwise Approach. Journal of Statistical Physics, Vol. 35.

André, M. (2019). A Result of Metastability for an Infinite System of Spiking Neurons. Journal of
Statistical Physics, Vol. 177.

André, M., & Planche, L. (2021). The Effect of Graph Connectivity on Metastability in a Stochastic
System of Spiking Neurons. Stochastic Processes and their Applications, Vol. 131.

20



Asymptotic memorylessness
In the setting of André and Planche (2021), which is close to our model, a simple technique is to
consider only the number of active neurons at any time ¢.

N T Y N T Y

HOOO - O

This is a (continuous time) Markov chain — compute the invariant measure explicitly — use it to
conclude.

Asymptotic memorylessness
This technique is NOT applicable here.

Indeed if for any ¢ > 0 we write X (¢) for the number of neurons above the threshold in our model,
then (X (t)),>, is not a Markov chain.

An alternative approach would to define (X (t)),~ as the process that gives the count of neurons for
each possible value of the membrane potential.

Asymptotic memorylessness
That is, for any ¢t > 0

X(t) = (Xo(t), X1(t),..., Xo_1(t), X4 (£), X35 (¢)) -
with

N
Xi(t) = Lqy,—iy fori € {0,...0 -1},

j=1

and
N
X5 =Y Lw,—o.m,-1},
=1

N
X (1) = Z Liv,=0,F;=0}-
=1

Then (X (t))¢>0 is a Markov chain on {0,... N}?*2 but it is also far less tractable than the previous
case...
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Pseudo stationarity
Remains the question of how to give a precise mathematical formulation of the second point in the
characterization of metastability.

A standard way of expressing this pseudo-stationarity is as follows (see Cassandro et al. 1984). Let
(En(t))i>0 be the state of a stochastic system taking values in some state space X ™.

Then prove that there is a non trivial measure p on X7, invariant for the infinite counterpart of the
system, and which correspond to the weak limit of (x(¢))¢>0 when N goes to oo.

Finally prove that, for any suitable f : X% — R, we have
1 s+R
7 rexnar~ [ fan

Pseudo stationarity

i §;§;§
O—0—0

| |
%
!
O—(O0—-0-0-0

Problem: a sequence of complete graphs doesn’t preserve the local structure!

The end
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