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Analysis of Extracellular Recordings

8.1. Introduction

This chapter presents the methods of analysis required for the “oldest”

types of brain–machine interface. These methods are (strongly) invasive, as

they require trepanation to insert a large number (10–100) of electrodes into

the brain tissue. The first feasibility studies were performed on rats [CHA 99]

and on monkeys [WES 00] – Chaplin [CHA 04] presents an initial overview

of this work. The advantage of these methods of recording is that they give

access to individual neuron activity with excellent resolution in time –

achieving this resolution is the main subject of this chapter – and the obvious

disadvantage is that they require trepanation, which excludes them from being

used with patients, except in very exceptional cases. As the other chapters of

this book will discuss, BCIs may be implemented without recourse to the

invasive methods that we shall discuss here; however, these methods are still

very frequently used by neurophysiologists in a wider context that we shall

introduce in the following section.

Chapter written by Christophe POUZAT.
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8.1.1. Why is recording neuronal populations desirable?

There are the following three principal reasons why recording large

numbers of neurons simultaneously while maintaining the resolution of

individual neurons is desirable for neurophysiologists1:

1) more collected data per instance of the experiment, which limits the

number of animals required for a study and reduces costs;

2) multiple models of information processing by neuronal networks, such

as perceptual binding by synchronization2, suggest that the synchronization

of the activity of certain neurons plays a defining role [MAL 81], and the

simultaneous recording of multiple neurons strongly facilitates or is perhaps

even necessary for the experimental study of this kind of model [DON 08];

3) multiple examples such as that of the motor system [GEO 86] show

that, even without synchronization, groups of neurons are required to properly

represent a stimulus or an action such as a motor command; even though it is

sometimes possible to study these phenomena through successive recordings

of unique neurons (as was performed in [GEO 86]), simultaneous recordings

make this task a lot easier (which returns to the first point outlined above).

8.1.2. How can neuronal populations be recorded?

There are currently three methods for recording neuronal populations.

Multiple extracellular recordings [BUZ 04] are the most commonly used

technique. The subject of this chapter is the analysis of data obtained using
this technique. Recordings with potential-sensitive probes [ZEC 89, HOM 09]

are used on brain slices and ganglia of invertebrates. Finally, recordings using

calcium-based fluorescence [HOM 09] are often presented in the literature,

but their resolution in time is insufficient for the study of questions of

synchronization [CAN 10, Figure 4, Chappter 4].

1 The technique of EEG, extensively discussed throughout this book, also provides

simultaneous recordings of multiple neurons, but without the resolution of individual neurons.

2 Link to Wikipedia article (English): http://en.wikipedia.org/wiki/Binding_problem.
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8.1.3. The properties of extracellular data and the necessity of
spike sorting

Figure 8.1 shows 1 s of recording at the four sites of a tetrode [GRA 95].

This recording was performed in the first olfactory relay, the antennal lobe,

of an insect: the locust Schistocerca americana. These readings will serve

as a running example throughout this chapter. Before being converted into a

numerical format (at a sample rate of 15 kHz), the data were filtered between

300 Hz and 5 kHz; the full details of the recordings are given in [POU 02].

The reader should note that the 300 Hz high-pass filter will have removed

most of the local field potentials that arise from postsynaptic activity. To keep

this chapter brief, we will not discuss the analysis of this type of signal; they

are identical to signals obtained by intracranial EEG3.

Figure 8.1. One second of data recorded at the four sites (electrodes) of a tetrode. The
data were filtered between 300 Hz and 5 kHz before being converted into a numerical
format. The sample rate is 15 kHz. These readings were taken in the antennal lobe
of a locust Schistocerca americana. Examples of action potentials at the first site
are marked by the letters S, M and L, with small, medium, and large amplitudes,
respectively

3 Link to Wikipedia article: https://en.wikipedia.org/wiki/Electrocorticography.
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The spikes visible at each of the sites of the recording, some examples of

which have been marked by the letters S (small), M (medium) and L (large)

in Figure 8.1, are of particular interest to us. These spikes are generated by

action potentials emitted by multiple neurons [PLO 07]. Based on the “all-

or-nothing” property of action potentials in axons, we can conclude, at least

provisionally, that multiple neurons are present [ADR 22]. Given these type of

data, we start by asking the following two interrelated questions:

1) How many neurons contributed to the recording?

2) Which neuron was the originator of each of the visible spikes?

Spike sorting is the stage of data processing that attempts to answer these

questions; we will study it in this chapter. We will return to the question of the

origin of the signal and a justification of the use of a tetrode, which consists of

multiple electrodes in close proximity of each other. The reader should,

however, note at this point that the spikes marked with S appear to be

associated with signals of similar amplitude on the fourth site, even smaller

amplitude on the third site and zero apparent amplitude on the second site. In

contrast, the amplitude of the signals associated with spikes marked with M

(medium) appears to be constant across all sites. We will see that the distance

between the source of the current, i.e. the neuron, and the electrode is the

principal determining factor of the recorded signal; given a fixed source

(neuron), the amplitude ratios are thus functions of the distance ratios

between the source and the recording sites: they depend on the position of the
source. Therefore, different ratios correspond to different sources (neurons).

8.2. The origin of the signal and its consequences

8.2.1. Relationship between current and potential in a
homogeneous medium

The equation that governs the relationship between the current emitted by

a point source4 of intensity I0 (in amperes) and electrostatic potential Φe (in

4 Point sources of current are conceptual constructs, in which they does not exist physically, but

provide a relevant approximation when a “neurite element” such as an axon segment measuring

0.5 μm or even a soma measuring 15 μm is recorded by an electrode placed at a distance of

100 μm.
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volts) observed at a distance r (assuming the potential at infinity is zero) is

given by:

Φe =
1

4πσe

I0
r
, [8.1]

where σe is the conductivity of the extracellular medium (in Siemens per

meter) assumed to be uniform. We shall neglect certain capacitive properties

of the extracellular medium [BED 04], but the model developed here,

nonetheless, provides an excellent initial approximation [LIN 14]. It is clear

that in order to apply equation [8.1], we must first have some method of

measuring or estimating the current. The most common approach is to assume

a realistic neuron morphology by building in various conductances distributed

in a non-homogeneous manner in the membrane, and then numerically

solving the cable equation. Solving this equation yields the densities of the

various currents. Their sum im(x) (where x denotes the lengthwise position

within the cable) is then used in a differential version of equation [8.1] to

obtain a formula of the following type:

Φe =
1

4πσe

∫
N

im(x)

r(x)
dx , [8.2]

where the integral is taken along the skeleton of the neuron5, referred to by

the label N . If the value of the membrane potential is known “at each point”

along the neuron, then by an elementary application of Ohm’s law and the law

of conservation of charge the desired current density may also be obtained.

Warning to the reader – the next section requires some mental gymnastics. AQ1

The membrane potential is usually represented at a fixed position as a

function of time, for example in the presence of an action potential. In the

next section, we shall fix the time and vary the position. Note that in the case

of an action potential propagating at constant speed without deformation, the

second representation may be easily deduced from the first.

5 By skeleton, we mean the true morphology of the neuron after reducing the diameter of

each neurite to 0; it is effectively a one-dimensional object with branches embedded in three-

dimensional space.
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8.2.2. Relationship between the derivatives of the membrane
potential and the transmembrane current

As described by Rall [RAL 77, pp. 64–65] and Plonsey and Barr [PLO 07,

Chapter 8], let us consider a “small segment of neurite” of radius a and length

Δx. If the intracellular potential6 Φi(x, t) at one of the ends of the segment is

not equal to the potential Φi(x+Δx, t), then Ohm’s law states that there is an

axial current of intensity:

Ii(x, t) = −πa2σi
Φi(x+Δx, t)− Φi(x, t)

Δx

≈ −πa2σi
∂Φi(x, t)

∂x
, [8.3]

where σi is the intracellular conductivity, and where currents are taken to be

positive in the direction of increasing x. Now, if the current Ii(x, t) entering the

segment is not equal to the current Ii(x+Δx, t) exiting the segment, the law of

conservation of charge states that the difference must have passed through the

membrane; since the density of the transmembrane current im(x, t) is positive

for outward-flowing current, we obtain:

Ii(x+Δx, t)− Ii(x, t) = −Δx im(x, t) giving

∂Ii(x, t)

∂x
= −im(x, t) , [8.4]

from which we obtain, after combining with equation [8.4]:

im(x, t) = πa2σi
∂2Φi(x, t)

∂x2
. [8.5]

Given that the gradients of the observed potentials immediately outside the

membrane are much lower than those inside (because the resistance between

two external points is much lower than the resistance between two interior

points), equation [8.5] becomes:

im(x, t) = πa2σi
∂2Vm(x, t)

∂x2
.

6 We explicitly include time, even though initially time is assumed to be fixed.
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where Vm is the transmembrane potential, and equation 8.2 may be rewritten

as:

Φe =
a2σi
4σe

∫
L

1

r(x)

∂2Vm(x, t)

∂x2
dx . [8.6]

Let us now consider the case of two long neurites with identical

properties7 except for their radius, both capable of propagating an action

potential. In the fourth volume of their monumental series, Hodgkin and

Huxley solved the wave equation [HOD 52, Equation 30, p. 522], that is to

say the ordinary differential equation satisfied by an action potential

propagating at constant speed8. They also showed that the time scale of the

membrane potential does not depend on the radius of the axon, and the speed

of propagation θ of the action potential satisfies:

θ2

a σi
= K , [8.7]

where K is a constant. Using dimensional analysis, Goldstein and Rall

[GOL 74] also showed that the size of the action potential in space is

proportional to the square root of the radius – it grows at the same rate as the

speed – which implies that, considered as a function of time at any given

point of the axon, the action potential does not depend on the radius. These

results only hold for non-myelinated fibers. The effect of the radius on the

spatial profile of the action potential and on its second derivative is shown in

the upper section in Figure 8.2, which considers axons of radius 1 μm (left)

and 2 μm (right)9. We can clearly see that the spatial breadth increases with

the diameter, and that the second derivative (necessarily) decreases twice as

rapidly with the diameter. The term 1/r(x) from equation [8.6] is shown in

black (for an electrode situated 50 μm from the center of the axon). Since an

7 That is, with identical conductances (types and values) and identical plasmic resistivity.

8 As a historical aside, Hodgkin and Huxley did not solve the system of equations that now

bears their names, which involves an equation with partial derivatives, but they did solve –

with a mechanical calculator – the simpler system satisfied by a wave propagating without

deformation along an axon, i.e. an action potential.

9 This results come from numerical solutions of the equations of Hodgkin and Huxley obtained

using the “classical” parameters specified by them (Detorakis and Pouzat, manuscript in

preparation).
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analytical solution of equation [8.6] is not possible, numerical solutions for

axons with radii between 10−1 and 20 μm – the domain of observed values in

non-myelinated cortical fibers – are summarized in the graphs at the bottom

of the figure. The bottom-left graph shows that the extracellular potential

grows faster than the radius to power 1.8; the right-hand graph shows that the

extracellular potentially decreases independently of the radius at least as

rapidly as one over the square of the distance between the electrode and the

axon.

Thus, if an axon of diameter 0.5 μm is connected to a soma of diameter 15

μm, the extracellular signal will be dominated by whatever happens inside the

soma [FAT 57, Figure 16, p. 53]; in the limit, the axon can be ignored without

affecting the value of the extracellular potential. The action potentials

recorded by extracellular electrodes will therefore reflect the events that

unfold inside the soma and the apical dendrite, if active. This also explains

why it is considerably easier to record pyramidal cells (large neurons) than

interneurons (small neurons) [GRO 70]. Additionally, if the action potentials

of the soma are not identical to those of the axon, as was demonstrated to be

the case in experiments10 for both invertebrates [EYZ 55, Figure 13]

and vertebrates [WIL 99, Figure 5A, third row], then the relationship between

the action potentials recorded by extracellular electrodes and the effective

emissions of the neuron is probably not uniquely characterized – the

relation: one somatic action potential = one action potential
in the axon probably does not always hold. We must also consider that

propagation may fail at the branching points of the axon [ANT 00, Figure 7]

and the possibility of “reflection” of action potentials [ANT 00, Figure 5];

two phenomena that may only be properly accounted for with recordings “at

all points” in the axon11. The conclusion of this short section is that critical

thinking remains valuable in the analysis of sequences of action potentials

obtained by extracellular recordings (and indeed by intracellular recordings)

of the somatic system.

10 These experiments show that it is possible to have a very small action potential at a somatic

level – these somatic recordings are intracellular, which means that these action potentials are

very likely indistinguishable from noise in the context of extracellular recordings – together

with a perfectly typical action potential in the axon during high-frequency discharges, or bursts.

11 Recordings may be obtained for one unique neuron with membrane potential-sensitive

probes.
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8.2.3. “From electrodes to tetrodes”

One feature that is clearly visible in Figure 8.2 (bottom right) is the 1/r2

decay of the potential with the distance. Thus, when two neurons “of same

type” are equidistant from an electrode, they will generate similar signals at

that electrode. Now, if a second electrode is placed nearby but at a distinct

location from the first, and if the first neuron is located “between the two”,

whereas the second neuron is closer to one electrode but further from the

other; the first neuron will generate signals of similar amplitude at both

electrodes, and the second neuron will generate a “large” signal at the first

electrode and a “small” signal at the second electrode. This reasoning may be

extended to greater numbers of electrodes, and explains why tetrodes are

used12. Figure 8.3 shows how tetrodes can help to classify spikes with similar

shapes and amplitudes at one recording site but distinct features at the other

sites.

8.3. Spike sorting: a chronological presentation

We continue with a “chronological” presentation of the principal methods

of spike sorting. This approach is not particularly synthetic, but in our opinion

it introduces the various relevant problems and solutions into a concrete

setting with minimal formalism. The figures in each section are drawn from

actual data. A few simplifications were made, such as the use of one single AQ2

recording site when four sites were available. The only differences between

these examples and what is done “in practice” are technical in nature, the

ideas are the same, and it is the ideas that are important. The data and a full

step-by-step description of its analysis with the software packages R13 and

Python14 are available on the author’s Web site15.

12 However, tetrodes are not always useful; for example, they serve no purpose in the antennal

lobe of the cockroach Periplaneta americana, while in the present example, in the antennal lobe

of the locust Schistocerca americana, they are essentially indispensable.

13 http://www.r-project.org/.

14 https://www.python.org/.

15 http://xtof.perso.math.cnrs.fr/sorting.html, at the bottom of the page.
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Figure 8.2. Top: the membrane potential (in red) – expressed as the deviation relative
to the rest value – of an action potential of two axons differing only in their radius,
1 μm on the left and 2 μm on the right. In blue, the second derivatives of Vm with
respect to the position; the peak value on the left is 0.46 mV/μm2, and is equal to
half of this on the right. In black, the curve shows the term 1/r(x) from equation [8.6]
for an electrode situated at 50 μm from the center of the axon whose position along
the axon is given by the minimum point of the second derivative of Vm; its peak value
is 2 × 10−2 μm−1. The integrand of equation [8.6] is the product of the blue curves
with the black curves. Bottom, a summary of numerical solutions for axons with radii
between 10−1 and 20 μm. On the left, the (minimum values of) Φe over the value of
Φe at a radius of 10−1 μm as a function of the ratio of the radii. The y-values of the
red curve are the x-values to power 1.8, and those of the blue curve are to power 2.2.
The various black curves show, from bottom to top, electrodes placed at 25, 50, 75 and
100 μm from the center of the axon. On the right, diagrams showing the evolution of
(the negative of the minimum value of) Φe for a given axon radius as a function of the
distance d between the electrode and the center of the axon. The radii of the axons are
from bottom to top: 10−1, 5× 10−1, 1, 10 and 20 μm. For a color version of this figure,
see www.iste.co.uk/clerc/interfaces1.zip
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Figure 8.3. Two hundred millisecond of data from the recording shown in Figure 8.1. A
and B mark two action potentials with amplitudes and shapes that are similar at site 1,
but very different at the three other sites. Similarly, C and D mark two action potentials
that are similar at site 2, but different at the other sites

8.3.1. Naked eye sorting

When the “all-or-nothing” property of action potentials in the axon was

first established [ADR 22], the only tools available to neurophysiologists were

recordings on paper (the oscilloscope had not yet been invented), and they had

to “laboriously” perform sorting with the naked eye based on the amplitude

[HAR 32, Figure 4], in a somewhat similar fashion to the way that we analyzed

the first site of Figure 8.1.

8.3.2. Window discriminator (1963)

Once magnetic tape recording systems had become commonplace in

physiology labs, the quantity of data to be processed increased significantly,

with the immediate result of inspiring certain researchers to automate the

processes that they had previously been performing by hand [POG 63]. The

first innovation was to construct dedicated electronic circuits. Samples were

classified by the peak amplitude of their events16 as illustrated in Figure 8.4.

16 This method is still used today in some labs, especially those that need to perform sorting

in real time. It is also used systematically for the audio outputs of amplifiers. Experimental
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Figure 8.4. Principle of the window discriminator. Three zones corresponding to three
classes of action potentials and thus three “neurons” are defined here: small action
potentials are those whose peak value is located between the black and orange dotted
lines; medium action potentials have a peak value between the orange and blue lines,
and large action potentials have a peak value higher than the blue line. The data were
taken from the first site in Figure 8.1

8.3.3. Template matching – (1964)

Physiologists soon realized that action potentials originating from two

different neurons could have the same peak amplitude but different shapes

(Figure 8.5(A)). This led to the introduction of a two-step method [GER 64]:

1) Two events with the same class of shape or template were identified with

the naked eye, and for each pattern, a dozen or so events were averaged. These

averages would subsequently serve as template estimators.

2) Each event was compared to each template by subtracting the template

from the event and calculating the sum of the squares of the components of

the difference vector, i.e. the residual vector (Figure 8.5(B)). The event is then

assigned to the closest template, that is to say the template with the smallest

residual vector.

researchers listen to the output of one of the electrodes when inserting them into the tissue;

and the electronic circuit between the amplifier output and the speaker removes all amplitudes

below a given threshold and saturates all amplitudes above a second threshold. Since large

spikes will be above the second threshold for longer than short spikes, the amplitude of each

event is encoded into the duration of the sounds.
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In statistics, an estimator17 is a function of the data that provides an estimate

of a parameter. Here, the parameters are the templates, or more concretely an

ordered sequence or vector of 45 amplitudes (in the original article [GER 64],

these vectors were defined by 32 amplitudes). Estimators are functions of the

data, so the value of an estimator changes as the data changes; formally, they

are random variables.

Figure 8.5. Principle of template matching A), the templates of neurons 6 (in red) and
7 (in black) (at the fourth site). B) top, the same event (in black) and three of the 10
templates (in gray) at the first site; below, the templates were subtracted from the
event, and the corresponding sum of the squares of the residues is shown in red.
The event clearly matches the second template. For a color version of this figure, see
www.iste.co.uk/clerc/interfaces1.zip

8.3.4. Dimension reduction and clustering (1965)

Faced with the problem of low computer memory availability in

physiology labs, Simon [SIM 65] had the idea that we should avoid working

with the full sequence of amplitudes as required by the technique of template

matching, instead restricting attention to the amplitudes measured at two

carefully chosen points in time of the event (Figure 8.6(A)). These points in

time were selected by observing the events superimposed together, so that the

amplitudes of the different categories of spike would be distinguished as

clearly as possible. This technique was able to reduce the number of

17 See Wikipedia article: https://en.wikipedia.org/wiki/Estimator.
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parameters necessary for characterizing an event by 30 or more; graphically,

we go from A to B in Figure 8.6. Disjoint domains in the plane representing

the data were constructed by the user “by hand”, each domain corresponding

to one neuron. Events were then classified according to the domain to which

they belonged (Figure 8.6(C)). Once this classification had been performed on

the reduced-dimension space, it is still possible, and perhaps even advisable,

to return to the initial representation in order to review the results

(Figure 8.6(D)). In today’s terminology, we would say that we reduced the
dimension18 by passing from A to B in Figure 8.6. This process of defining

domains is an example of what is now known as clustering. These two very

important aspects of high-dimensional data analysis – of which spike sorting

is an example – are described in a manner that is both general and very

pedagogical in the book by Hastie et al. [HAS 09]. The two spaces between

which we have been moving, the 45-dimensional space (Figures 8.6(A) and

8.6(D)) and the 2-dimensional space (Figures 8.6(B) and 8.6(C)), are called

sample spaces19 by statisticians [BRE 09].

8.3.5. Principal component analysis (1968)

The fact that the user must choose two points at which to compare the

amplitude as coordinates for the reduced space is inconvenient in the previous

method. Physiologists therefore kept looking for alternative methods, more

automatic and more efficient. Principal components analysis [GLA 68] was

the first such alternative to be proposed, and today remains the most widely

employed technique. Principal components analysis finds the subspace of

desired dimension that reproduces the largest possible fraction of the variance

of the sample – here, the term sample is used in the statistical sense: a set of

observations/individuals randomly selected from a population. We will not

discuss this method further here [GLA 76, HAS 09], but we will mention the

fact that typical applications involve the intermediate step of singular value

decomposition20 of the covariance matrix of data, which we shall briefly

explain in the following note.

18 See the section on dimension reduction on the Wikipedia page: https://en.wikipedia.org/

wiki/Dimensionality_reduction.

19 The sample space is the set of all potentially observable events in an experiment. The first

step of probabilistic modeling is to define this space.

20 Wikipedia page: https://en.wikipedia.org/wiki/Singular_value_decomposition.
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Figure 8.6. Principle of dimension reduction and clustering A), 267 spikes recorded at
the first site. The vertical gray lines at 400 μs and 1.2 ms indicate the two chosen points
in time. B) Amplitude at 1.2 ms as a function of the amplitude at 400 μs. C) Same as
(B), except the boundaries of a partition have been defined manually; the spikes are
colored according to the class that contains them. D) Same as (A), except the spikes
are colored according to the class that contains their projections. For a color version of
this figure, see www.iste.co.uk/clerc/interfaces1.zip

NOTE.– The covariance matrix is constructed from the matrix D of data,

whose rows are the events. In Figure 8.6, D is a matrix with 267 rows – there

are 267 events – and 45 columns – each event ei is specified by an ordered set

of 45 amplitudes (ei,1, . . . , ei,45)i=1,...,267. Each of the action potentials in

Figure 8.6(A) corresponds to one row of the matrix D. The covariance matrix

is obtained by subtracting the average row (ej)j=1,...,45 where

ej =
∑267

i=1 ei,j/267 from each of the rows (ei,1, . . . , ei,45)i=1,...,267, which

yields the matrix M whose entries are given by Mi,j = ei,j − ej . The entries

of the covariance matrix V are then given by Vi,j =
∑267

k=1Mi,k Mk,j/267, or,
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written as matrix multiplication: V = MT M/267, where MT is the

transpose of M (Wikipedia page: https://en.wikipedia.org/wiki/Covariance).

The result of principal component analysis on the set of data in the previous

section is shown in Figure 8.7. Figure 8.7(A) shows both the average event (in

black) and the average event plus the first (red) and second (blue) principal

component multiplied by 10. We see that events whose projections onto the

first component have high values differ from the average in amplitude but not

in shape, and that events whose projections onto the second component have

high values differ in shape but not in amplitude. The reader should note

(Figure 8.7(B)) that the multiplicative factor of 10 is the same order of

magnitude as the observed values. Figure 8.7(B) corresponds to Figures

8.6(B) and 8.6(C) and shows that it is easy to define domains by reducing the

dimension along the principal components. Nevertheless, we should note that

performing principal component analysis requires a certain amount of

(computer) memory, the absence of which was precisely what originally

motivated Simon [SIM 65] to introduce the idea of dimension reduction.

These memory constraints have now long since disappeared.

8.3.6. Resolving superposition (1972)

Since the deviations of the extracellular potentials of action potentials are

of the order of the millisecond, we can expect to observe instances of

superposition21 similar to those shown in Figure 8.8(A) whenever sufficiently

many neurons are registered by the recording22. This phenomenon was

characterized in the early 1970s, and solutions based on “manual” template

matching were suggested [PRO 72]. Clearly, as shown in Figure 8.8,

resolving superposition requires the templates to have been estimated:

superposition cannot be resolved simply by considering the projection of the

data onto a subspace like in the previous two sections. Today, the most

21 In the literature, the terms “collision” and “interference” are also used to describe this

phenomenon.

22 If ν is the average discharge frequency of K neurons in a recording, and Δ is the typical

duration of an action potential and if we assume that neuron discharges may be modeled

sufficiently accurately by a Poisson distribution, then the probability of there being zero

action potentials within a window of duration Δ is exp−KνΔ, the probability of there

being exactly one is KνΔexp−KνΔ and the probability of there being at least two is

1 − (1 + KνΔ) exp−KνΔ; the frequency of superposition among windows containing at

least one event is the ratio of these last two values.
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commonly used methods of spike sorting are derived from methods that

combine dimension reduction and clustering; since these techniques are not

capable of resolving superposition, it appears that the majority of published

results that rely on sorting simply ignore superposition. . . .

Figure 8.7. Principal component analysis A), in black, the average of the 267 action
potentials recorded at the first site; in red, the same average plus 10 times the first
principal component; in blue, the same average plus 10 times the second principal
component. B) Two hundred sixty-seven events projected onto the plane defined
by the first two principal components. Domains that yield the same classification
as in Figure 8.6 have been added by hand. For a color version of this figure, see
www.iste.co.uk/clerc/interfaces1.zip

8.3.7. Dynamic amplitude profiles of action potentials (1973)

Until the early 1970s, recordings of isolated axons or nerves were very

common, especially in invertebrates. In this type of recording, the

“all-or-nothing” property of action potentials effectively holds, even during

high-frequency firing. But as cortical recordings in vertebrates became more

commonplace, a new problem particular to these subjects soon presented

itself: the dynamic character of the amplitude profiles (and sometimes the

shape) of the action potentials emitted by a neuron during high-frequency or
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burst discharges, as shown by Figure 8.9(A). The solution suggested by

Calvin [CAL 73] requires manually processing the data, and relies on a

“relatively” stable combination of amplitude reduction and interspike

intervals during bursts (Figure 8.9(C)). Note how these amplitude dynamics

introduce additional obstacles for spike sorting (Figure 8.9(B)).

Figure 8.8. Resolving superposition A), in bold black, an event that does not
correspond to any of the templates/neurons; in gray (thinner) the sum of the two
patterns – associated with neurons 1 and 2 of our classification – shown in B).
The scales of the two graphs are identical. For a color version of this figure, see
www.iste.co.uk/clerc/interfaces1.zip

8.3.8. Optimal filters (1975)

Attempts to perform multiple recordings along the nerve of a marine

invertebrate led Roberts and Hartline [ROB 75] to suggest a method capable

of automatically decomposing instances of superposition. Their method may

be viewed as an extension of the template matching method; the idea is to

construct one filter per neuron such that the filter is maximal when an action

potential emitted from the neuron for which the filter was constructed is

present in the data, and minimal or zero when noise or emissions from

another neuron are running through the signal. The filters are linear, so that if

action potentials of two or more neurons are present with a small offset in
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time, such as in Figure 8.8(A), the output of the two filters should display

spikes with the same offset in time. Similarly to the technique of template

matching, the method assumes that we have previously estimated the

characteristic shapes/patterns associated with each neuron, at each recording

site if multiple sites are in use. The construction of optimal filters is slightly

too complicated to be fully explained here ([ROB 79] has all of the details),

but we will illustrate the idea with the example of matched filters23. The

characteristic shapes of the neurons obtained at each of the sites (three

templates corresponding to three different neurons are shown in gray in the

upper section of Figure 8.5(B)) are represented by a set of vectors, with one

vector per recording site. Each vector has the same number of elements,

corresponding to the number of sample points in the template – this method

works best with lengthy templates that start at zero and return to zero,

whereas in general the method of template matching works well even with

shorter templates – in the case shown in Figure 8.10, for the second neuron,

we have 130 points per template at sites 1 and 4:

m2 =

(
m2,1

m2,4

)
=

(
m2,1,1, . . . ,m2,1,130

m2,4,1, . . . ,m2,4,130

)
To construct a matched filter from these two vectors, we begin by

subtracting from each m2,i,j the average at the corresponding site:

m2,i,• =
∑130

j=1m2,i,j/130 to obtain f2,i,j = m2,i,j − m2,i,•, and then we

normalize so that the scalar product of the filter f2 with the original template

(
∑

i∈{1,4}
∑130

j=1m2,i,jf2,i,j) is equal to one. In the suboptimal case of a

matched filter, the filters are therefore just normalized versions of the

templates. If we write the data to which the filter will be applied in the

following form:(
. . . , d1,k−2, d1,k−1, d1,k, d1,k+1, d1,k+2, . . .
. . . , d4,k−2, d4,k−1, d4,k, d4,k+1, d4,k+2, . . .

)
then the output F2,k of filter 2 at “time” k is given by the expression:

F2,k =
∑

i∈{1,4}

130∑
j=1

f2,i,jdi,k+j−J ,

23 Wikipedia article: http://en.wikipedia.org/wiki/Matched_filter.
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where J is the position of the peak within the template m2. The

implementation of this method, and the way that it can automatically resolve

superposition, are demonstrated in Figure 8.10. Matched filters are

suboptimal because their “interference”, that is to say the output of the filter

for templates that it was not designed to match, has not been optimized. The

secondary peak in the output of filter 2 shown in Figure 8.10(B) is one such

example of interference. The method of filter construction presented in

[ROB 79] reduces this problem significantly; nevertheless, if too many of the

characteristic shapes are too similar it will not be possible to fully eliminate

the interference.

Figure 8.9. Dynamic amplitude profiles of action potentials A), example of a burst,
somatic recording in a “cell-attached” arrangement of a Purkinje cell in a slice of
cerebral cortex of a rat. Note how the amplitude of the action potentials is diminished
during the burst. B) Simultaneous extracellular recording (recordings taken by Matthieu
Delescluse). Three neurons, including the one recorded in cell-attached mode, register
on this recording. Notice how the action potentials of a tonically active neuron have
a similar amplitude to the action potentials of the reference neuron (also recorded
in a cell-attached arrangement) at the end of the burst. C) Four hundred eighty-nine
recorded bursts over the course of 1 min aligned by their first action potential. The
details of the recordings and data processing steps are given in [DEL 06]
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Figure 8.10. Matched filters A), a subset of the data from the grasshopper example,
at two of the four sites of recording. B) Corresponding output of the matched filters
constructed from the templates of neurons 2 and 7. The gray bands are 99%
confidence bands obtained by superimposing “noise events” – segments of raw data
between the two detected action potentials – and the template of each of the two
neurons before applying the filter. C) The resolved signals obtained from the filter
outputs. For a color version of this figure, see www.iste.co.uk/clerc/interfaces1.zip

8.3.9. Stereotrodes and amplitude ratios (1983)

The most direct and possibly still the most effective method of sorting

spikes with dynamic amplitude profiles was suggested by McNaughton et al.
[MCN 83]. It is perhaps not so much a method of analysis, but rather a

recording technique: stereotrodes (two recording sites in close proximity, as

suggested in the original article) or tetrodes (four sites in close proximity

[GRA 95]). The motivation for this method is presented in perfect clarity in

the last-but-one paragraph of their introduction:

The method described in the present report is based on the fact

that the size of the extracellular action potential varies inversely

with the distance of the recording electrode from the current

generator. In theory, a closely spaced tetrahedral array of

recording electrodes with tips sufficiently close together to record
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signals from overlapping populations of neurons should permit

the unique identification of all neuronal spikes that exceed the

noise level. This is so since each cell would generate a unique

point in the three-dimensional data space whose axes are defined

by the spike height ratios of channels 1 and 2, 2 and 3, and 3 and

4. Note, that since the discrimination is based on amplitude

ratios, the problem of intrinsic variation in spike amplitude such

as occurs during the complex spike burst of hippocampal

pyramidal cells is, in principle, solved.

The data recorded in slices of the cerebral cortex of a rat, which we

previously used in Figure 8.9, will once again serve to illustrate the principle

of amplitude ratios. Figure 8.11 shows 200 ms of data recorded at the two

sites (separated by 50 μm) of a stereotrode. The action potentials from the

“reference” cell in this last figure are marked with vertical gray dotted lines.

Action potentials from a different cell that fires “in pairs” (and sometimes in

triplets) with strongly characteristic amplitude dynamics are also marked with

vertical gray lines.

Figure 8.11. Data from a stereotrode 200 ms of extracellular data recorded along the
surface of the cell bodies of Purkinje cells – cerebral cortex slice of a young rat, same
dataset as in Figures 8.9. The vertical gray lines mark two action potentials of a cell
firing in pairs (with a strongly dynamic amplitude profile). The vertical gray dotted lines
show the action potentials of the burst-firing cell if Figure 8.9
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After detecting the action potentials by identifying the local maxima above

a certain threshold, the peak amplitudes of each spike are obtained, and each

action potential is represented in Figure 8.12 (left) as a point on a plane

(sample space) whose axes are given by the peak amplitude at the second site

(horizontal) and the peak amplitude at the first site (vertical). Each point is

assigned an angle by calculating the arctangent of the amplitude ratio.

Calculating the amplitude ratio is always a somewhat sensitive operation,

because dividing two noisy values increases the error. In order to avoid

excessively large errors, we performed regression on the amplitudes near the

peak at site 1 (5 points on each side of the peak) as a function of the

corresponding amplitudes at site 2, neglecting the constant term. The

estimated density of the angles is shown in Figure 8.12 (right). Thus, we

obtain well-defined peaks, which may be used to define angular domains

corresponding to domains of amplitude ratios.

Figure 8.12. Amplitude ratios. On the left, the (peak) amplitude at site 1 as a function
of the (peak) amplitude at site 2 for the action potentials detected in the dataset in
Figure 8.11. The units of the axes are standard deviations of the noise. The gray lines
correspond to the angular domains defined in the right-hand section. On the right, the
distribution of the θ angles estimated using the tangent obtained by regressing the 10
amplitude values in the neighborhood of the peak at site one as a function of the 10
amplitude values in the neighborhood of the peak at site 2 (neglecting the constant
term). The vertical gray lines were placed “with the naked eye” to partition the angles
into different categories
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At this point, we may choose between two strategies: we could perform

clustering by initially ignoring the amplitude ratios and later merging classes

located within the same angular domain if, after merging, a refractory period

is indeed visible in the distribution of the intervals between action potentials;

alternatively, we can perform clustering separately on the angular domains,

merging classes so long as there remains a visible refractory period. For the

data of the given example, if we restrict attention to the largest events, a

classification based solely on the angular domains will be sufficient, as shown

in Figure 8.13.

Figure 8.13. Classification based on amplitude ratios A), left section of Figure 8.12,
with points colored by amplitude ratio. Note that only spikes with peak amplitude larger
than 10 at one or more sites have been retained. B) Identical to Figure 8.11 with spikes
colored by amplitude ratio. The cell firing in pairs has been correctly identified (in blue),
and so has the cell firing in bursts (in brown) and the cell firing “constantly” (in orange).
For a color version of this figure, see www.iste.co.uk/clerc/interfaces1.zip

8.3.10. Sampling jitter (1984)

One specific difficulty arises with the technique of data sampling. The data

are physically saved in the form of sequences (or vectors) of amplitudes –

values of the amplitude at uniformly separated points in time – whereas the
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original true data were continuous. In an ideal situation, without any

recording noise, we would expect the position of two consecutive action

potentials generated by the same neuron to be shifted relative to the sampling

times (technically, we would usually use the term phase rather than position

for this), as shown in Figure 8.14(A). If analysis is performed directly on the

sampled data, for example an attempt to resolve superposition by subtracting

the closest-fitting template (Figure 8.8), new events may be unintentionally

introduced as a result, as shown in Figure 8.14(B1). In this example, the event

sampled at the bottom of Figure 8.14(A) was used as a template and

subtracted from the event sampled at the top of Figure 8.14(A). The peak

amplitude of the difference is equal to five times the standard deviation of the

noise, which means that it would be identified as a new spike, as our detection

threshold was chosen to be four times the standard deviation of the noise for

these data. Another way of visualizing the consequences of sampling jitter is

by simulating, using a continuous template – more precisely a template

defined by a continuous function – noisy sampled data with and without jitter.

The jitter is simulated by a uniformly distributed random variable taking

values in an interval of -1/2 to +1/2 of the sampling period. The template is

then subtracted from the simulated data, and the sum of the squares of the

residues is calculated (as we did earlier for Figure 8.5(B)). The distribution of

the sum of the squares of the residues is shown in Figure 8.14(B2). We see

that jitter can have an effect on the variability that is of the same order of the

effect of noise. This effect depends on the sampling rate and on the shape of

the template, as explained in [POU 14]. The usual strategy for counteracting

this problem is to sample at high frequencies, but this is only feasible when

relatively few channels are recorded simultaneously. Another option is to

numerically resample by application of the Nyquist–Shannon theorem

[POU 02]. It is also possible to effectively correct for jitter using the method

suggested in 1984 by McGill and Dorfman [MCG 84] – using Fourier

transforms – or using a Taylor–McLaurin series expansion [POU 14]. Finally,

for purposes of resolving superposition – in the author’s experience – it seems

to be the case that the effect of jitter is less noticeable when using filters

(section 8.3.8) as compared to subtraction-based methods (section 8.3.6),

although these apparent differences are yet to be documented in a “serious”

study.
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Figure 8.14. Sampling jitter A) two action potentials from the same neuron sampled
with two different phases; the points correspond to the digitally sampled amplitudes,
and the continuous line corresponds to the data pre-sampling. B1) Illustration of the
jitter effect – without recording noise – with template matching; here, the template is
the sampled version of the figure at the bottom of A, and the event is the sampled
version of the figure shown above. The “bottom” amplitudes are subtracted from the
top amplitudes (which precede them by half of an amplitude period). B2) A simulation
comparing 1,000 events with and without uniform jitter on +/- half of a sampling
period with white recording noise following a normal distribution (here, the events
were defined by sequences of 30 amplitudes). For a color version of this figure, see
www.iste.co.uk/clerc/interfaces1.zip

8.3.11. Graphical tools

Since the late 1980s, there have been spectacular improvements in the

computational power of computers, with the introduction of interactive
methods of visualization, the first and foremost of which is most certainly the

program XCLUST developed by Wilson.24 These methods involve the

systematic application of the techniques of dimension reduction as discussed

in section 8.3.4; they allow multiple projections to be visualized

simultaneously. Thus, instead of working with only the first two principal

components (Figure 8.7), we are able to work with four or more, and compare

the graphs of the projections onto planes defined by pairs of any two of the

24 The latest versions of this program are available on github:

https://github.com/wilsonlab/mwsoft64.
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principal components (first and second, first and third, etc.). Figure 8.15

shows a screenshot of the software package GGobi – free of cost and open

source25 – showing an example of one such matrix of projections26. This

figure attempts to show the interactivity of the program as much as possible.

The “active” panel or graph is at the top-left of the figure (with a black

border). The little light-blue square is the “paintbrush”, which the user is free

to move using the mouse. Each point, initially magenta colored, becomes blue

on the active graph once it is selected by the blue square as well as the
corresponding points on all of the other graphs in the matrix. The technique

of coloring in parallel equivalent points on multiple graphs is called brushing;

see [CLE 93, p. 294] and [COO 07]. Today, this is how most spike sorting is

performed. The program that we are showcasing here, GGobi, is capable of

providing even more sophisticated (and extremely useful) dynamic

visualizations, such as the “grand tours” introduced by Asimov [ASI 85]. In

our experience, although GGobi is not sufficient27 for spike sorting, it is,

nevertheless, the most important software package for this task.

8.3.12. Automatic clustering

With the development of interactive graphical methods since the late 1980s,

the development, or the adoption, of automatic or semiautomatic clustering

methods has been the greatest focus of spike sorting “methodologists”. Indeed,

the problem with the methods presented up to this point is that they require

“significant” effort from the researcher performing data analysis. “Template

matching” (section 8.3.3) and “filtering” (section 8.3.8) require the templates

and filters to be estimated, and the methods combining dimension reduction

and clustering (sections 8.3.4, 8.3.5 and 8.3.11) require the classes or event

groups to be defined directly by the user. These “heavy” tasks have the

following two effects on the analysis:

25 Available for download free of cost for Linux, Windows and Mac at the link:

http://www.ggobi.org/.

26 This figure was prepared using the locust dataset, but unlike Figures 8.6 and 8.7, all of the

events and all four recording sites were included – for clarity, the previous figures were prepared

with subsets of the events from one single recording site.

27 Because resolving superposition is not possible, at least not easily, after performing

dimension reduction.
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1) the analysis becomes time intensive;

2) the analysis becomes difficult to reproduce28.

Figure 8.15. Matrix of scatter plots showing the projections of a set of events onto the
planes defined by pairs taken from the set of the first four principal components: a
“screenshot” of the software package GGobi. The “diagonal” graphs (first row, second
column and second row, third column) are the smooth estimates of the densities of
the projections of the events onto the second (first row, second column) and third
(second row, third column) principal components. For a color version of this figure,
see www.iste.co.uk/clerc/interfaces1.zip

There is therefore a strong demand for automatic methods, which has in the

past inspired a large number of publications (and still does to this day). At the

risk of angering a fair few of our colleagues, we wish to venture the opinion

that most of the obstacles encountered in the context of (the clustering stage

of) spike sorting are addressed in sufficient depth by the two most common

statistical methods for this type of problem:

28 Reproducibility fails at two different levels: two different people analyzing the same dataset

will usually not define the same classification as illustrated in [HAR 00]; and one same person

analyzing the same dataset 6 months later will usually not define the same classification twice.
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1) the k-means algorithm29;

2) Gaussian mixture models (or GMM)30 modified by the expectation–
maximization or [EM] algorithm)31.

The k-means algorithm is easy to specify (and implement):

– Choice of number of components: the number of classes k to include in

the model32 is chosen by the user;

– Initialization: k events, which we shall call centroids, are chosen at

random among the n observed events;

– Distance calculation: the (Euclidean) distance of each event from each

of the k centroids is calculated;

– Event assignment: each event is assigned to the centroid to which it is

closest;

– Centroid update: the updated position of each centroid is calculated as

the average of the events that “belong” to that centroid;

– Iteration: return to the distance calculation step until a maximal number

of iterations – chosen beforehand – is reached, or another stopping condition33

is satisfied.

– Results: the final values of the centroids are the “templates”, the final

assignments yield the classification and the “total variance”34 is calculated.

This procedure is repeated multiple times (10–50 times) with different
initializations; the final result is taken to be the instance with the smallest final

total variance. The way that the algorithm works is illustrated in Figure 8.16.

29 See the Wikipedia article: https://en.wikipedia.org/wiki/K-means_clustering.

30 See the Wikipedia article: https://en.wikipedia.org/wiki/Mixture_model.

31 See the Wikipedia article: https://en.wikipedia.org/wiki/Expectation-maximization_

algorithm.

32 In practice, observing the data using “dynamic” modes (rotations and “grand tours”) in

GGobi allows k to be chosen. We will discuss automatic methods at a later point.

33 An example of a stopping condition is when all distances between two between consecutive

values for each of the centroids are below a chosen threshold.

34 Each centroid is subtracted from each of its assigned events (vector subtraction) and the

squares of the (Euclidean) norms of these differences are summed. This sum is denoted the

“total variance”.
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The data are from Figure 8.15, but to make the illustration easier to read one

single projection (onto the plane defined by the first and third principal

components) was used and the events from three of the 10 neurons – which

were identified when the analysis was performed “properly” – were omitted.

The EM algorithm for a GMM adds a an extra layer of formalism to the

k-means algorithm: a probabilistic model of data generation is therefore

explicitly assumed. Each observation y1,y2, . . . ,yn is viewed as the

realization of a random variable Y ∈ Rp whose distribution is known up to a

finite number of parameters. In the case of a Gaussian mixture, the density of

Y may be written as:

p (Y = y; θk) =

k∑
j=1

πj φ(y;μj ,Σj) , [8.8]

where θk is the set of model parameters,

θk = {πj , μj ,Σj}j=1,...,k , 0 ≤ πj ≤ 1 ,
k∑

j=1

πj = 1 , [8.9]

and where φ( ;μ,Σ) is the density of a multidimensional normal (or Gaussian)

distribution:

φ(y;μ,Σ) =
1

(2π)p/2|Σ|1/2 exp
(
−1

2
(y − μ)TΣ−1(y − μ)

)
, [8.10]

where μ is the mean, a vector in Rp, Σ is the covariance matrix20, |Σ| is the

determinant of Σ and the superscript T is the transpose. The unknowns of the

mixture distribution are the weights πj – there are only k − 1 independent

values – the k means μj and the k covariance matrices Σj . With this setup,

the EM algorithm for a GMM is only slightly more complicated than the k-

means algorithm. In the general case where each neuron/aggregation has its

own covariance matrix, it may be stated as follows:

– Initialization: k events are randomly chosen from the n observed events,

which are taken as the k μ
(0)
j . The π

(0)
j are typically all initialized with identical

values equal to 1/k, and the Σ
(0)
j are also initialized identically as diagonal

matrices with elements equal to the variance of the noise;



Analysis of Extracellular Recordings 175

Figure 8.16. K-means algorithm. Initialization: seven events (colored discs) were
randomly chosen from the set of events (black crosses). Assignment: the distance
between each centroid and each event was calculated, and each event was assigned to
the nearest centroid. Note how the concentration of points centered around the sky blue
section is partitioned into segments such that its edges are assigned to its neighbors,
colored magenta and turquoise. New centroids: the updated positions of the centroids
(black discs) are calculated; the old positions are shown as circles. Results: after 20
iterations of the algorithm, the final assignments are obtained. The trajectories of the
centroids are shown in black, and the initial positions are shown as circles. For a color
version of this figure, see www.iste.co.uk/clerc/interfaces1.zip
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– Calculation of relative likelihoods: the relative likelihood pi,j that the jth

of the k centroids generated the ith event is calculated:

pi,j = π
(l)
j φ(yi;μ

(l)
j ,Σ

(l)
j )

– Assignment of responsibilities: the “responsibility” ti,j of each of the

centroids j for each of the events i is obtained by normalizing the relative

likelihoods:

ti,j = pi,j/
k∑

m=1

pi,m

.

– Update of parameters: new parameter values are obtained for each

centroid by averaging each event weighted by the responsibility of the

corresponding centroid:

π
(l+1)
j =

n∑
i=1

ti,j/n ,

μ
(l+1)
j =

(
n∑

i=1

ti,j yi

)
/

n∑
i=1

ti,j

and

Σ
(l+1)
j =

(
n∑

i=1

ti,j (yi − μ
(l+1)
j )(yi − μ

(l+1)
j )T

)
/

n∑
i=1

ti,j .

– Iteration: return to step calculation of relative likelihoods until a maximal

number of iterations – chosen beforehand – has been performed, or another

stopping condition is satisfied;

– Results: the results are given by the latest values for the parameters and

the responsibilities.

Analogously to the k-means algorithm, this procedure is repeated multiple

times (from 10–50 times) with different initializations; the final result chosen

from the instance of the algorithm that produces the greatest final probability

density – or likelihood, as explained in the next section – for the given
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dataset35. The μj give estimates for the centroids. The responsibilities may be

utilized in two different ways: the first approach is to assign each event to the

centroid with the greatest responsibility for that event; the second is to record

the responsibilities as is and perform all subsequent estimations (histograms

of intervals between action potentials, cross-correlograms between neurons,

etc.) by taking averages weighted by the responsibilities as explained in

[POU 05, section 5.4]. Possible (and widely used) simplifications of the GMM
as specified above include taking the πj to be identical for all neurons –

which amounts to assuming that they all fire with identical frequency – and

taking the Σj to be identical – which amounts to assuming that each

individual neuron always generates spikes of the same shape or template; in

other words, there are no dynamic shape profiles (sections 8.3.7 and 8.3.9).

By combining these last two constraints, we obtain a version of the k-means

algorithm that allows for partial assignments in the assignment step. On the

dataset in Figure 8.16, regardless of the version of GMM chosen, the algorithm

produces a classification identical to the classification given by k-means,

assuming that the same number of classes/neurons is used. In practice, GMM
with EM is preferred over k-means when the concentrations of points

visualized with GGobi have different shapes and, most importantly, when they

partially overlap. When they overlap, estimating the position of the centroids

(the μ of a MMG) will be more reliable, which is important when using these

methods of automatic clustering as a preamble to a classification based on

template matching (section 8.3.3) or filtering (section 8.3.8).

The theoretical basis for methods of automatically choosing the number of

classes – the k parameter in the above – is the concept of penalized

likelihood, and are discussed in [HAS 09, Chapter 7]. The likelihood is

simply the probability density of the observations (and the log-likelihood is

its logarithm), except that the role of the observations and the parameters have

been switched; for example, in the case of the GMM considered above:

l(θk;y1, . . . ,yn) =

n∑
i=1

log

⎧⎨⎩
k∑

j=1

πj φ(yi;μj ,Σj)

⎫⎬⎭ . [8.11]

35 We would usually calculate the final log-likelihood instead:∑n
i=1 log

(∑k
j=1 πj φ(yi;μj ,Σj)

)
.
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The log-likelihood is a function of the parameters, assuming that the data
are fixed. A major mathematical result in this area of statistics is that by

choosing the estimator θ̂ of θ to be the argument that maximizes equation

[8.11] for a fixed number of classes, we achieve an “optimal” value36. The

fact that the sequence θ(l) generated by the EM algorithm converges to θ̂
(assuming some fairly general conditions) is another important mathematical

result. Now, in the case of a GMM, we can immediately see that as k increases

and the diagonal elements of the Σj decrease, the log-likelihood becomes

infinite, for example if we take the number of classes to be equal to the

number of observations and set πj = 1/n and the μj equal to the observations

(one centroid per observation). In other words, if we attempt to maximize the

likelihood while allowing the number of classes to vary, without setting a

lower bound (> 0) for the diagonal elements of the Σj , then the likelihood is

maximized by a model with as many classes as there are observations, where

each centroid is equal to one of the observations and where the covariance

matrices are degenerate with zeroes along the diagonal. If the data are being

continually recorded, it is in principle possible to estimate the covariance

matrix of the noise (similarly to [POU 02]) and to use this estimation as a

constraint for the covariance matrices in each of the classes: the elements of

the covariance matrices must be greater than or equal to the corresponding

elements in the covariance matrix of the noise. Interestingly, this approach

does not seem to have ever been pursued. Instead, more general statistical

methods are typically used; these methods do not assume that it is possible to

independently estimate the noise level, penalizing the likelihood by a term

proportional to the “complexity” of the model – in other words, the number of

parameters. This approach leads us to minimize the Akaike information
criterion (AIC)37:

AIC(k) = −2 l(θ̂k) + 2 d , [8.12]

36 Optimal in the sense that if the data were indeed generated by a mixture of Gaussian models,

and if the number of observations n tends to infinity, then the random variable θ̂ will converge

to θ and has the smallest possible variance.

37 Wikipedia link: https://en.wikipedia.org/wiki/Akaike_information_criterion.
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where θ̂k ∈ Rd maximizes equation [8.11] andd is the dimension of the

parameter space, which is a function of k. Another even more commonly used

criterion is the Bayesian information criterion (BIC) 38:

BIC(k) = −2 l(θ̂k) + d log n . [8.13]

In the light of the discussion above, as k increases, so too does l(θ̂k), and

the first terms of the AIC and the BIC decrease; it is clear that the terms 2d
and d log n will counteract this decrease, as they themselves increase with k.

Thus, the BIC penalizes complex models more strongly than the AIC. In

practice, both criteria overestimate the number of classes/neurons. This is

largely due to the fact that events can overlap when clustering is performed

(sections 8.3.6 and 8.3.8); these instances of superposition are not correctly

accounted for in mixed models (see the remark about this at the end of section

8.3.11). It would clearly be desirable to perform a comparison of these

models based on complete datasets specifically including information about

instances of superposition, not just at the clustering stage, but this has not yet

been pursued to our knowledge.

8.4. Recommendations

We would like to conclude this lengthy chapter with various

recommendations, ranging from general tips to more specific advice.

First of all, a piece of advice that holds in much more generality than simply

the field of spike sorting: readers should never use methods that they do

not understand. In the context of spike sorting, and for data analysis in

neurophysiology in general, an excellent way to understand a method is to
program it. Today, there are many generalistic environments – or “ecosystems”

as they are increasingly called by programmers – for data analysis: Python39,

R40; these ecosystems provide a platform for the methods discussed in the

literature to be rapidly and easily implemented. As an example, we invite the

reader to refer to the analysis of the two datasets used in this chapter in R and

38 Wikipedia link: http://en.wikipedia.org/wiki/Bayesian_information_criterion.

39 Official Web site: https://www.python.org/, with the additional packages Numpy, Scilab,

Matplotlib (the Web site http://www.scipy.org/ can serve as an entry point).

40 Official Web site: http://www.r-project.org/.
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Python.41 This advice should not be understood to imply that for “serious”

analysis authors should necessarily reprogram all methods for themselves;

clearly, for algorithms such as k-means or EM for GMM, effective and

well-tested code is available and should be preferred. Nevertheless, a good

understanding of these two algorithms may be easily obtained even just by

programming simple versions of them. The advantage of our recommended

approach, which will prove massive in the medium or long term, is that it

enables data analysts to unshackle themselves from the methods provided

by manufacturers (generally amplifier manufacturers); in our experience,

these methods are opaque and insufficiently adaptable42. After more than 15

years of working in spike sorting (among other things, thankfully), on various

different species (rats, mice, monkeys, locusts, beetles, bees), various different

tissue types (cerebellum, hippocampus, neocortex, antennal lobe, etc.) and

with various types of electrode, we have learned that certain key stages:

filtering, event detection, clustering methods must be adapted to suit the tissue

type43. Once these adjustments have been made, it is very straightforward,

in environments with the right support such as Python or R, to write a script

with very few parameters (or even no parameters) that can perform the entire

sorting process for a given dataset. With this is mind, we strongly recommend

using a modernized version of the approaches used until the mid-1980s:

1) The use the first minute of recording (or the first few minutes) to estimate

the templates (section 8.3.3) with GGobi followed by k-means or EM for a

GMM if k-means does not produce satisfactory results, or bagged clustering
[LEI 99] if both of these options are not satisfactory;

2) Establish a classification by template matching (section 8.3.3) or using

filters (sections 8.3.8) after resolving instances of superposition (section

8.3.6), accounting for sampling jitter (section 8.3.10) and dynamic amplitude

profiles44 (sections 8.3.7 and 8.3.9). This classification should be based

41 See the page dedicated to spike sorting on the author’s Web site:

http://xtof.perso.math.cnrs.fr/sorting.html, examples of analysis may be found at the bottom of

the page.

42 These two problems prompted the author to first begin programming his own methods.

43 This holds for species/tissue pairs; thus different methods are used for recordings in the

antennal lobe (the insect equivalent of the olfactory bulb for vertebrates) for locusts and for

beetles.

44 We still need an effective algorithm for resolving superposition in the presence of dynamic

amplitude profiles.
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solely on a recording period that is “short” compared to the electrode
drifting timescale, which triggers changes in the templates and should not be

performed over the whole of the recording;

3) Correct the templates for drifting, if necessary, and establish a

classification for the next period of recording.

In general, the use the median instead of the mean – this is particularly

important for template estimation – and the median of the absolute value of

the deviations with respect to the median instead of the standard deviation (in

short, the median absolute deviation); these two estimators are “robust”45.

These two recommendations are a lot more important than they might seem;

in practice, they produce a considerable improvement in the reliability of the

results, and not just for spike sorting. Finally, the literature on spike sorting,

and on the analysis of neurophysiological data in general, is relatively

opaque; the author firmly believes that this problem could be reduced, or

perhaps completely solved, if users/developers gave unrestricted access to
their data and their programs, or in other words if they conducted their

research so as to be reproducible [STO 14, DEL 12]: this is the best way to

achieve both individual and collective progress.
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