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1 Introduction: delayed responses, working memory, persistent
activity and all that

It starts with Fuster in 1973

A delayed-response trial typically consists of the presentation of one of two possible visual
cues, an ensuing period of enforced delay and, at the end of it, a choice of motor response
in accord with the cue. The temporal separation between cue and response is the principal
element making the delayed response procedure a test of an operationally defined short-term
memory function.

Reference: Fuster J. (1973) Unit Activity in Prefrontal Cortex During Delayed-Response Performance:
Neuronal Correlates of Transient Memory. J. Neurophys. 36: 61-78.
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Fuster’s paradigm

Figures 1 and 4 of Fuster (1973).

Other delayed activities are observed

Figure 6 of Fuster (1973).
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A “modern” version of Fuster’s paradigm

Adaptation of figures from Funahashi et al (1989) by Constantinidis et al (2018).
References:

• S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic (1989) Mnemonic coding of visual space in
the monkey’s dorsolateral prefrontal cortex . J. Neurophys. 61: 341-349.

• Christos Constantinidis, Shintaro Funahashi, Daeyeol Lee, John D. Murray, Xue-Lian Qi, Min
Wang and Amy F.T. Arnsten (2018) Persistent Spiking Activity Underlies Working Memory Jour-
nal of Neuroscience 38 (32): 7020-7028.
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https://journals.physiology.org/doi/abs/10.1152/jn.1989.61.2.331?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
https://journals.physiology.org/doi/abs/10.1152/jn.1989.61.2.331?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
https://www.jneurosci.org/content/38/32/7020


A better view of the rasters

Funahashi et al (1989) Figure 3.
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Changing the delay

Funahashi et al (1989) Figure 11.

What happens when mistakes are made?

Funahashi et al (1989) Figure 13.
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Parametric working memory

Romo et al (1999) title and figure 1a.

Reference: Romo, R., Brody, C., Hernández, A. et al. Neuronal correlates of parametric working
memory in the prefrontal cortex. Nature 399, 470–473 (1999). https://doi.org/10.1038/20939.

Part of Romo et al (1999) figure 2.
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https://www.nature.com/articles/20939
https://www.nature.com/articles/20939


First modelling efforts

Reference: Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neu-
rosci. 2001 Aug;24(8):455-63. doi: 10.1016/s0166-2236(00)01868-3.

Cellular substrate

Reference: Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P. S.
(2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience,
9(4), 534–542. doi:10.1038/nn1670.

This is not the whole story!

• NMDA receptors are also involved: Min Wang, Yang Yang, Ching-Jung Wang, Nao J. Gamo,
Lu E. Jin, James A. Mazer, John H. Morrison, Xiao-Jing Wang, Amy F.T. Arnsten (2013) NMDA
Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal
Cortex. Neuron, 77 (4): 736-749.

• Dopamine also plays a key role: MIN WANG, SUSHEEL VIJAYRAGHAVAN, PATRICIA S.
GOLDMAN-RAKIC (2004) Selective D2 Receptor Actions on the Functional Circuitry of Working
Memory. SCIENCE, 303: 853-856
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https://doi.org/10.1016/S0166-2236(00)01868-3
https://doi.org/10.1038/nn1670
https://doi.org/10.1016/j.neuron.2012.12.032
https://doi.org/10.1016/j.neuron.2012.12.032
https://doi.org/10.1016/j.neuron.2012.12.032
https://science.sciencemag.org/content/303/5659/853
https://science.sciencemag.org/content/303/5659/853


Figure 1 of Wang et al (2006).
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Models with short term facilitation

Reference: Omri Barak, Misha Tsodyks (2014) Working models of working memory, Current Opinion
in Neurobiology, 25: 20-24.

Membrane conductances (ion channels) generate fluctuations

Figures 1 and 2 of Sigworth and Neher (1980). Reference: Sigworth, F. J., & Neher, E. (1980). Single

Na+ channel currents observed in cultured rat muscle cells. Nature, 287: 447-449.
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https://doi.org/10.1016/j.conb.2013.10.008


Synapses generate even more fluctuations

Figure 1 of Pouzat and Marty (1998).

Reference: Pouzat, C., & Marty, A. (1998). Autaptic inhibitory currents recorded from interneurones
in rat cerebellar slices. The Journal of Physiology, 509(Pt 3), 777.
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Short Term Plasticity - STP
• STP : change in the synaptic efficacy
• acts on timescales which are of the order of hundreds to thousands of milliseconds
• comparable to the timescale of the spiking activity of the network
• 3 basic mechanisms of STP – here, I will only speak about short-term potentiation.

Figure 1: Curtis Neveu, CC BY-SA 3.0.

More on STP
Short-term potentiation due the residual calcium (presynaptic) :
- release of neurotransmitters is triggered by calcium, via calcium channels.
- after transmitter release : free calcium gets pumped out of the presynaptic terminal.
- but : this takes time.
- So : if a new action potential arrives, it can find a residual calcium concentration that was not

pumped out yet, leading to a larger calcium concentration than after the first AP and to a larger
transmitter release.

Bibliographic context
• many papers have been devoted to STP since at least the last two decades...
• probably starting with Markram and Tsodyks (1996), followed by Kistler and van Hemmen (1999),

Seeholzer et al. (2018) : study of the effect of STP on “working memory”
• mostly : numerical studies of properties of STP within relatively simple phenomenological models
• There is an interesting article http://www.scholarpedia.org/article/Short-term_synaptic_plasticity

from Scholarpedia
• For the biological aspects : Zucker and Regehr (2002).
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2 A model
Our contribution

• We propose a simple mathematical model for short-term potentiation due to the residual calcium

• in which short time memory can be described

• as tendency of the system to keep track of an initial stimulus

• Namely : by staying within a certain untypical region of the space of configurations during a
short but macroscopic amount of time

• before finally being kicked out of this region and relaxing to the true equilibrium of the process.

• Main technical tool: a rigorous justification of the passage to a large population limit
and study of the limit model which is described by a 2d−dynamical system.

The model

• N interacting neurons (N will tend to +∞ later). Purely excitatory case.

• For each neuron i, its membrane potential process UN
t (i) ≥ 0 accumulates the stimuli coming from

the other neurons. These stimuli are modulated by their current residual calcium values.

• Neuron i spikes at rate φ(UN
t (i)), that is,

P ( i spikes in ]t, t+ h]| history ≤ t) = φ(UN
t (i))h+ o(h).

• φ is the spiking rate function of each neuron, Lipschitz, φ(0) = 0, φ(x) > 0 for all x > 0.

• ZN
t (i) = counting process counting the spikes of i up to time t.

• Each time i spikes, it gives an additional amount of potential Wi→j to each neuron j in the system.

• Wi→j depends on time, since it depends on the current residual calcium concentration RN
t (i) at

that time :
Wi→j(t) =

α

N
RN

t−(i), α > 0

• Continuous leakage of potential continuously at constant rate β > 0 :

UN
t (i) = e−βtUN

0 (i) +
α

N

N∑
j=1

∫
]0,t]

e−β(t−s)RN
s−(j)dZ

N
s (j).

• The residual calcium concentration of a neuron is increased by 1 at each spike time of the neuron.

• Continuous leakage at constant rate λ > 0.

• Thus,

RN
t (i) = e−λtRN

0 (i) +

∫
]0,t]

e−λ(t−s)dZN
s (i),

for all t ≥ 0.

First Remarks

• There is no reset to a resting potential after spiking.

• We are only dealing with the purely excitatory case, no inhibition is present in our model. No
mathematical problem to add inhibitory synapses...

• Our model can be seen as a system of interacting pairs of coupled Hawkes processes.

• No (direct) interactions in the residual calcium values RN
t (i) : they are just functionals of ZN (i).
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Longtime behavior of the finite system

• Since φ(0) = 0, the all-zero state is an invariant state of the system.

• Following the ideas of Duarte and Ost (2016), it is straightforward to show :

Theorem 2.1. If φ is differentiable in 0, then the system stops spiking almost surely. As a
consequence, the unique invariant measure of the process (UN

t , R
N
t ) is given by δ0,0, where 0 ∈ RN

denotes the all-zero vector in RN .

• Situation changes as N → ∞, that is, number of neurons tends to infinity.

Figure 2: 3D plot of 5 trajectories obtained by simulating a network of 1000 neurons from 5 different
initial states.
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3 Large population limits
Heuristics : Form of the limit model I

• The membrane potentials of the N neurons evolve according to

dUN
t (i) = −βUN

t (i)dt+

α

N

N∑
j=1

∫ ∞

0

RN
t−(j)1{z≤φ(UN

t−(j))}M
j(dt, dz),

where the Mj , 1 ≤ j ≤ N are independent Poisson random measures having intensity dtdz.
• Limit should be obtained by propagation of chaos : for large N,

α

N

N∑
j=1

∫ ∞

0

RN
t−(j)1{z≤φ(UN

t−(j))}M
j(dt, dz) ∼

E
∫ ∞

0

αRN
t−(1)1{z≤φ(UN

t−(1))}M
1(dt, dz).

Heuristics : Form of the limit model II

E
∫ ∞

0

αRN
t−(1)1{z≤φ(UN

t−(1))}M
1(dt, dz)

= E
(∫ ∞

0

αRN
t−(1)1{z≤φ(UN

t−(1))}dz

)
dt = αE[Rtφ(Ut)]dt.

So : In the N → ∞−limit, any neuron should behave as an independent copy of

Ut = U0 − β

∫ t

0

Usds+ α

∫ t

0

E[φ(Us)Rs]ds,

Rt = R0 − λ

∫ t

0

Rsds+

∫ t

0

∫ ∞

0

1{z≤φ(Us−)}M(ds, dz).

Heuristics : Form of the limit model III

Ut = U0 − β

∫ t

0

Usds+ α

∫ t

0

E[φ(Us)Rs]ds,

Rt = R0 − λ

∫ t

0

Rsds+

∫ t

0

∫ ∞

0

1{z≤φ(Us−)}M(ds, dz).

Remark 3.1. − Only randomness for the membrane potential process of a typical neuron in the limit
is in the initial condition U0. − If U0 deterministic, then the spike counting process of a typical neuron
in the limit population t 7→

∫ t

0

∫∞
0

1{z≤φ(Us−)}M(ds, dz) is an inhomogeneous Poisson process.

Heuristics : Form of the limit model IV
Two first questions :

• (Unique) Existence of the limit process?

• Does the finite system converge to the limit - and how fast?

• Longtime behavior of the finite and the limit system?

• Answer to the first question : We will have to take care of the product term E[φ(Us)Rs]ds appearing
in the limit dynamics of U : it is non-Lipschitz.

• Answer to the second question : by coupling. See later. The non-Lipschitz term might still cause
some troubles...
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Well-posedness of the limit process
dUt = −βUtdt+ αE[φ(Ut)Rt]dt, dRt = −λRtdt+

∫∞
0

1{z≤φ(Ut−)}M(dt, dz).

First situation : U0 = u0 deterministic and φ(x) ≤ C
√
x for all large x ≥ x0.

• Then Ut = ut deterministic, s.t. E[φ(Ut)Rt] = φ(ut)E(Rt).

Putting rt = E(Rt), (ut, rt) solves

dut = −βutdt+ αφ(ut)rtdt, drt = −λrt + φ(ut)dt.

• Consider gt =
√
ut, then for large x,

ġt ≤ −(β/2)gtdt+ C(α/2)rtdt, ṙt ≤ −λrt + Cgtdt.

So : Existence of non-exploding solution whence uniqueness on [0, T ] by a priori bounds on rt and
gt .

Well-posedness of the limit process - BIS
Second situation : U0 random, but : existence of exponential moments for R0 and φ bounded

and Lipschitz.

• Truncation argument :

|φ(Ut)Rt − φ(Ũt)R̃t| ≤ rLφ|Ut − Ũt|
+Rt1{Rt>r}∥φ∥∞ + ∥φ∥∞|Rt − R̃t|.

• Existence of exponential moments for Rt, uniformly over bounded time intervals.

• For xt := E| Ut − Ũt|, yt = E|Rt − R̃t| and αt = xt + yt, clever choice of r = rt implies

dαt ≤ CT | ln α̃t|α̃tdt

Osgood’s lemma (x lnx−version of Gronwall) implies α ≡ 0.

Coupling with the limit system
Still in the above second situation :

• Osgood’s lemma + Sznitman coupling (use the same PRM’s for the finite and the limit system)

E
(
|UN

t (i)− U∞
t (i)|+ |RN

t (i)−R∞
t (i)|

)
≤ CTN

− 1
2 e

−CT
.

(very bad rate in N)

• Can be improved under the condition EeaR0 lnR0 <∞ for some 0 < a ≤ 1. Then

E
(
|UN

t (i)− U∞
t (i)|+ |RN

t (i)−R∞
t (i)|

)
≤ CTN

− 1
2+ε , (1)

for all N ≥ N0, t ≤ T.

• Proof relies on the fact that V (r) = ear ln r is a Lyapunov function for Rt.

Coupling with the limit system
In the first situation : U i

0 = u0 deterministic for all i, φ bounded and Lipschitz :

• Then UN
t (i) = UN (i) for all i, for all t ≥ 0, where

dUN
t = −βUN

t dt+
α

N

∑
j

RN
t−(j)

∫ ∞

0

1{z≤φ(UN
t−)}M

i(dt, dz).

• So we need a control of the deviations of the empirical mean 1
N

∑N
j=1R

N
t (j) from the limit expec-

tation.

Theorem 1. Imposing exponential moments for the initial condition of RN
0 (i), with exp high probability,

for any fixed T > 0,
UN (i) and 1

N

∑N
j=1R

N
T (j) stay in a N−1/2+δ−tube around their associated limit quantity during

[0, T ].
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4 Study of the limit process
Study of the limit process in the first framework U0 = u0

− Let ut = EUt, rt = ERt. Then{
dut = −βutdt+ αφ(ut)rtdt
drt = −λrtdt+ φ(ut)dt

}
. (2)

− Any stationary solution (u∗, r∗) of (2) must satisfy

λr∗ = φ(u∗) and βu∗ = αφ(u∗)r∗. (3)

− This implies
u∗ =

α

βλ
φ2(u∗). (4)

− Of course, (0, 0) is still an equilibrium.
But for φ sigmoidal, other equilibria might appear.

• r−null-cline is given by {r = 1
λφ(u)}.

• u−null-cline {r = (β/α)Φ(u), u > 0} ∪ {r = u = 0}, where Φ(u) = u/φ(u).

Phase portrait :

And for a system that we have simulated :

Figure 3: Phase portrait of the limit equation, right figure : on a log-log scale

So : for suitable choices of α, β, λ, a second stable equilibrium (umax, rmax) appears - which does not
exist for the finite size system.
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Theorem 4.1 (Deviations from the limit system). Take some starting point (u0, r0) in the domain of
attraction of (umax, rmax) and introduce

t1 = t1(ε) = inf{t : (ut, rt) ∈ Bε(u
max, rmax)}.

Then for all N ≥ N1, for all 1 ≤ i ≤ N,

P (|UN
t1 (i)− umax| ≥ 2ε or | 1

N

N∑
j=1

RN
t1 (j)− rmax| ≥ 2ε)

≤ Ct1e
−cε2

√
N .

Short term memory

• Suppose we expose the finite (but big) system to some initial stimulus s.t. it is pushed into
Bε(u

max, rmax).

• Then this stimulus is switched off, and we start observing the system.

• Since the point is attracting and N large, the system is attracted to a small neighbourhood of
(umax, rmax) and stays in this neighbourhood for a while.

• We interpret this transient behavior as an expression of short term memory.

• In the long run, the system will finally get kicked out of this neighbourhood and start rapidly
decaying towards the all-zero state.

Simulations

Figure 4: Phase plots on a log-log scale. Left, 5 trajectories (gray lines) obtained by simulating a network
of 1000 neurons. On both plots the black curves show the null-cline of u (V shaped) and of r (inverted
L shape).
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The same behavior should be true for the model with reset (GL)
• We studied model without reset because the limit model is deterministic dynamical system.
• However, simulations show the GL model should behave the same (still needs to be proven).
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Short term memory and metastability

• All this should be related to metastability.

• Penrose and Lebowitz, Rigorous treatment of metastable states in the van der Waals-
Maxwell theory, JSP 1971

– A system starting in a metastable state is very likely to stay there for a long time.

– Once it has left the vicinity of the metastable state, it is very unlikely to return there.

– This happens after an unpredictable time - which is random, and the “unpredictability” is
expressed through the fact that it must be exponentially distributed.

• Writing τN = exit time of Bε(u
max, rmax), we believe that we have convergence in law, as N → ∞,

of the rescaled exit times
τN/E(τN ) → exp(1).

Exponentiality of the last spiking time

(Has only been rigorously proved for a slightly different model including reset, without short term
synaptic facilitation : Löcherbach + Monmarché, IHP 2022.)

Empirical survival function obtained from 1000 replicates with α = 107.78, β = 50, λ = 2.16, a = 3
and a network size of 20. All simulations start with their membrane potential and residual calcium
within 1 % of the asymptotic fixed point values. They run until activity dies (the sum of the phi is
smaller than 10−6) or until time 500,000 is reached. A log scale is used for the ordinate.
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Some ideas of the techniques used for our proofs
• We used deviation inequalities for martingales which are of the form

MN
t =

α

N

N∑
j=1

∫ t

0

∫ ∞

0

RN
s−(j)1{z≤φ(UN

s−(j))}[M
j(ds, dz)− dsdz].

• To control these pure-jump martingales having (a priori) unbounded jumps, we use a Bernstein-
type inequality ⇒ see next slide.

Bernstein-type inequality for square integrable martingales with unbounded jumps
−[M ]t =

∑
s≤t(∆Ms)

2, and let < M >t be its predictable compensator.
− To deal with the big jumps, one puts, for a fixed a,

Ha
t :=

∑
s≤t

(∆Ms)
21{|∆Ms|>a}+ < M >t .

Theorem 4.2 (Dzhaparidze, van Zanten, SPA 2001).

P (M∗
t ≥ z,Ha

t ≤ L) ≤ 2 exp

(
−1

2

z2

L
ψ(
az

L
)

)
, (5)

where ψ(x) = (1 + x/3)−1 and M∗
t = sups≤t |Ms|.

Some literature

• Duarte, A., Ost, G. A model for neuronal activity in the absence of external stimuli. MPRF
2016

• Kistler, W.M., van Hemmen, L. Short-Term Synaptic Plasticity and Network Behavior. Neural
Computation 1999.

• Markram, H., Tsodyks, M. Redistribution of synaptic efficacy between neocortical pyramidal
neurons. Nature 1996

Thanks for your attention - our paper has appeared in JSP 2020 and you can find it also on arXiv :
https://arxiv.org/abs/1903.01270.

The fully documented simulation codes as well as the gnuplot and Python analysis scripts used in
this presentation can be obtained from our PlmLab depository: interacting_neurons_with_stp.
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