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Introduction: delayed responses, working memory, persistent
activity and all that



It starts with Fuster in 1973

A delayed-response trial typically consists of the presenta-
tion of one of two possible visual cues, an ensuing period
of enforced delay and, at the end of it, a choice of motor
response in accord with the cue. The temporal separation
between cue and response is the principal element making
the delayed response procedure a test of an operationally
defined short-term memory function.



Fuster's paradigm
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¥ie. 4. Unit of type I during five delayed-response trials with 32-sec delay. Spikes are represented by
vertical lines in a graphic display obtained by computer method. The notation next to the arrow at the
end of cach trial's dclay refers to the accuracy (C, correct; 1, incorrect) and side (R, right; L, left) of the
response. The serics of single-trial records in this figure—as in subsequent figures—is made of records from
¥ic. 1. Diagram of an cxperimental animal jn COsecutive trials.
the testing apparatus.

Figures 1 and 4 of Fuster (1973).



Other delayed activities are observed
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Figure 6 of Fuster (1973).



A “modern” version of Fuster's paradigm
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Adaptation of figures from Funahashi et al (1989) by Constantinidis
~+ al (ON019)



A better view of the rasters

Funahashi et al (1989) Figure 3.



Changing the delay

Funahashi et al (1989) Figure 11.



What happens when mistakes are made?
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Funahashi et al (1989) Figure 13.




Parametric working memory

Neuronal correlates of a MWW N

parametric working memory « 500 ms
inthe prefroMa' cortex PD KD Base Comparison KU PB

Ranulfe Romo, Carlos D. Brody, Adrian Hernandez

& Luis Lemus

Instituto de Fisiologia Celular, Universidad Nacional Autanéma de México,
México D.F. 04510, México

Romo et al (1999) title and figure 1a.
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Part of Romo et al (1999) figure 2.



First modelling efforts

Synaptic reverberation underlying
mnemonic persistent activity

Xiao-Jing Wang

Stimulus-specific persistent neural activity is the neural process underlying
active (working) memory. Since its discovery 30 years ago, mnemonic activity
has been hypothesized to be sustained by synaptic reverberation in a recurrent
circuit. ¥y il and work has begun to test the
reverberation hypothesis at the cellular level. Moreover, theory has been
developed to describe memory storage of an analog stimulus (such as spatial
location or eye position), in terms of continuous ‘bump attractors’ and ‘line
attractors. This review summarizes new studies, and discusses insights and
predictions from biophysically based models. The stability of a working
memory network is recognized as a serious problem; stability can be achieved
it reverberation is largely by NMDA ptors at

must be able to be turned on and
switched off rapidly (=100 ms) by transient inputs.
For 30 years, persiste v in the cortex has

been documented by numerous unit recordings from
behaving monkeys during wi g memory tasks
(Box 1), How does stimulus-selective persistent
activity arise in a neural network? Can we explain
persistent activity in terms of the biophysics of

neurons and synapses, and circuit connectivity?



Cellular substrate

Heterogeneity in the pyramidal network of the
medial prefrontal cortex

Yun Wang', Henry Markram?, Philip H Goodman?, Thomas K Bergerz, Junying Ma! &
Patricia S Goldman-Rakic*3

The p cortex is ially ad: dto i activity that outlasts stimuli and is resistant to distractors,
presumed to be the basis of working memory. The pyramidal network that supports this actlwty is unknown. Multineuron patch-
clamp recordings in the ferret medial prefrontal cortex showed a of ing distinct ks
of dlfferent pyramidal cells. One subnetwork was similar to the pyramidal netwcrk commonly found in pnmary sensory areas

of dating p! id cells mter d with d pr g synapses. The other
pyramidal cells with dual aplcal dendrif playing d disct patterns; these cells were hyper reuprncally
connected with facilitating synap: isplaying p ynapti ion and post-tetani ion. These cellular,
synaptic and network properties could ampllfy interactions b idal neurons and support persistent activity in

the prefrontal cortex.
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Figure 1 of Wang et al (2006).
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Models with short term facilitation

Available online at www.sciencedirect.com

ScienceDirect

Working models of working memory

Omri Barak' and Misha Tsodyks®

Working memory is a system that maintains and manipulates
information for several seconds during the planning and
execution of many cognitive tasks. Traditionally, it was believed
that the neuronal underpinning of working memory is stationary
persistent firing of selective neuronal populations. Recent
advances introduced new ideas regarding possible
mechanisms of working memery, such as short-term synaptic
facilitation, precise tuning of recurrent excitation and inhibition,
and intrinsic network dynamics. These ideas are motivated by
computational considerations and careful analysis of
experimental data. Taken together, they may indicate the
plethora of different processes underlying working memory in
the brain.

activity related to storing a fixed item is not stationary,
and there is a large heterogeneity in the firing profiles of
different neurons [3,4,5%,6]. From the computational side,
the network activity representing a memorized item
should exhibit a sufficient degree of stability to ensure
memory retainment. "This requirement is especially chal-
lenging for storing continuous variables, such as orien-
tation or spatial position of a visual cue, because of an
inevitable drift along the variable’s representation.
Furthermore, integrating the various data-driven ¢l
lenges in a self-consistent manner is often a non-tr
computational problem.




Membrane conductances (ion channels) generate
fluctuations
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Figures 1 and 2 of Sigworth and Neher (1980).



Synapses generate even more fluctuations
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Figure 1 of Pouzat and Marty (1998).



Short Term Plasticity - STP

e STP : change in the synaptic efficacy

e acts on timescales which are of the order of hundreds to
thousands of milliseconds

e comparable to the timescale of the spiking activity of the network
e 3 basic mechanisms of STP — here, we will only speak about
short-term potentiation.



Short Term Plasticity - STP
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Figure: Curtis Neveu, CC BY-SA 3.0.



More on STP

Short-term potentiation due the residual calcium (presynaptic) :

- release of neurotransmitters is triggered by calcium, via calcium
channels.

- after transmitter release : free calcium gets pumped out of the
presynaptic terminal.

- but : this takes time.

- So : if a new action potential arrives, it can find a residual
calcium concentration that was not pumped out yet, leading to a
larger calcium concentration than after the first AP and to a larger
transmitter release.



Bibliographic context

e many papers have been devoted to STP since at least the last
two decades...

e probably starting with Markram and Tsodyks (1996), followed by
Kistler and van Hemmen (1999), Seeholzer et al. (2018) : study of
the effect of STP on “working memory”

e mostly : numerical studies of properties of STP within relatively
simple phenomenological models

e There is an interesting Scholarpedia article
http://www.scholarpedia.org/article/Short-

term _synaptic _plasticity

e For the biological aspects : Zucker and Regehr (2002).
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A model



Our contribution

v

We propose a simple mathematical model for short-term
potentiation due to the residual calcium

in which short time memory can be described
as tendency of the system to keep track of an initial stimulus

Namely : by staying within a certain untypical region of the
space of configurations during a short but macroscopic amount
of time

before finally being kicked out of this region and relaxing to
the true equilibrium of the process.

Main technical tool: a rigorous justification of the passage
to a large population limit and study of the limit model
which is described by a 2d—dynamical system.



The model

>

>

N interacting neurons (N will tend to 40 later). Purely
excitatory case.

For each neuron i, its membrane potential process U/ (i) > 0
accumulates the stimuli coming from the other neurons. These
stimuli are modulated by their current residual calcium values.

Neuron i spikes at rate (UM (i)), that is,

P( i spikes in |t, t + h]| history < t) = @(UN(i))h + o(h).

 is the spiking rate function of each neuron, Lipschitz,
©(0) =0, ¢(x) > 0 for all x > 0.



» ZN(i) = counting process counting the spikes of i up to time
t.
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» ZN(i) = counting process counting the spikes of i up to time
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ZN(i) = counting process counting the spikes of i up to time
t.

Each time i spikes, it gives an additional amount of potential
Wi,_,; to each neuron j in the system.

Wi,_,; depends on time, since it depends on the current
residual calcium concentration RY(i) at that time :

a

Wisi(t) = 3 RN (), a>0

Continuous leakage of potential continuously at constant rate
6>0:

UM () = e P U ,VZ [, &Rz



» The residual calcium concentration of a neuron is increased by
1 at each spike time of the neuron.

» Continuous leakage at constant rate A > 0.



» The residual calcium concentration of a neuron is increased by
1 at each spike time of the neuron.

» Continuous leakage at constant rate A > 0.
» Thus,

R() = e R + [ e NeDaz),
10,t]

for all t > 0.



First Remarks

» There is no reset to a resting potential after spiking.
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» We are only dealing with the purely excitatory case, no
inhibition is present in our model. No mathematical problem
to add inhibitory synapses...



First Remarks

» There is no reset to a resting potential after spiking.

» We are only dealing with the purely excitatory case, no
inhibition is present in our model. No mathematical problem
to add inhibitory synapses...

» Our model can be seen as a system of interacting pairs of
coupled Hawkes processes.

> No (direct) interactions in the residual calcium values RN (/) :
they are just functionals of ZN(/).



Longtime behavior of the finite system

» Since p(0) = 0, the all-zero state is an invariant state of the
system.



Longtime behavior of the finite system

» Since p(0) = 0, the all-zero state is an invariant state of the
system.

» Following the ideas of Duarte and Ost (2016), it is
straightforward to show :

Theorem

If @ is differentiable in 0, then the system stops spiking almost
surely. As a consequence, the unique invariant measure of the

process (UN, RN) is given by 0g o, where 0 € RN denotes the

all-zero vector in RV.



Longtime behavior of the finite system

» Since p(0) = 0, the all-zero state is an invariant state of the
system.

» Following the ideas of Duarte and Ost (2016), it is
straightforward to show :

Theorem

If @ is differentiable in 0, then the system stops spiking almost
surely. As a consequence, the unique invariant measure of the

process (UN, RN) is given by 0g o, where 0 € RN denotes the

all-zero vector in RV.

» Situation changes as N — oo, that is, number of neurons
tends to infinity.



Residual calciu

Figure: 3D plot of 5 trajectories obtained by simulating a network of 1000
neurons from 5 different initial states.
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Large population limits



Heuristics : Form of the limit model |
e The membrane potentials of the N neurons evolve according to

duMN(iy = —pUN(i)dt +
N )
(6% ) :
,\,Z/O REZ U)o gy W (dt d2).
Jj=1"

where the MY/, 1 < j < N are independent Poisson random
measures having intensity dtdz.
e Limit should be obtained by propagation of chaos : for large N,

N e
(6 . :

N Z/o R U)oy gy W (dt, dz) ~
j=1



Heuristics : Form of the limit model Il

IE/o AR (M z< oy yyM’ (dt, dz)

= (/o O‘Rlv—(l)l{zgwut”(l))}dz) dt = aE[Rep(Uy)]dt.



Heuristics : Form of the limit model Il

E/o aRfN*(l)l{zgso(U,{V_u))}Ml(df, dz)
= (/ O‘Rtlv—(l)l{zgwur(l))}dZ) dt = aE[Ryp(Uy)]dt.
0

So : In the N — oco—limit, any neuron should behave as an
independent copy of

t t
U = uo—/s/ Usds—i—a/ E[(Us)Rs]ds,
0 0

t t 0
R: = Ry— )\/ Rsds +/ / 1{z§<p(U5,)}M(d5a dZ).
0 0 JO



Heuristics : Form of the limit model Ill

t t
U = UQ—B/ Usds—I—a/ E[p(Us)Rs]ds,
0 0

t t 0
R: = Ryp— )\/ Rsds + / / 1{z§¢(us_)}M(dS, CI'Z).
0 0 Jo

Remark

— Only randomness for the membrane potential process of a typical
neuron in the limit is in the initial condition Uy.

— If Uy deterministic, then the spike counting process of a typical
neuron in the limit population t — fot Jo© Liz<p(u,_13M(ds, dz) is
an inhomogeneous Poisson process.



Heuristics : Form of the limit model IV

First questions :

» (Unique) Existence of the limit process?

» Does the finite system converge to the limit - and how
fast?

» Longtime behavior of the finite and the limit system?
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product term E[p(Us)Rs|ds appearing in the limit dynamics of
U : it is non-Lipschitz.



Heuristics : Form of the limit model IV

First questions :

>
>

>
>

(Unique) Existence of the limit process?

Does the finite system converge to the limit - and how
fast?

Longtime behavior of the finite and the limit system?

Answer to the first question : We will have to take care of the
product term E[p(Us)Rs|ds appearing in the limit dynamics of
U : it is non-Lipschitz.

Answer to the second question : by coupling. See later. The
non-Lipschitz term might still cause some troubles...



Well-posedness of the limit process
dU; = —BUsdt + aE[p(U;)Rildt, dR: = —ARedt + [ 1iac o, )y M(dt, dz).

First situation : Uy = up deterministic and ¢(x) < Cy/x for all
large x > xp.

» Then U; = uy deterministic, s.t. E[o(U;)R:| = ¢(ur)E(Ry).
Putting rr = E(R:), (ut, re) solves

dUt = —IBUtdt + ozgo(ut)rtdt, drt = —)\rt + @(Ut)dt
» Consider g; = /uz, then for large x,
gt S —(/8/2)gtdt + C(a/2)rtdt, f:t- S —)\rt + Cgtdt

So : Existence of non-exploding solution whence uniqueness on
[0, T] by a priori bounds on r; and g; .



Well-posedness of the limit process - BIS

Second situation : Uy random, but : existence of exponential
moments for Ry and ¢ bounded and Lipschitz.

» Truncation argument :
|o(Us)Re — o(Un)Re| < rlLy| Uy — Uy
+ Relgre>rill@lloe + llolloo | Re — Rel.

> Existence of exponential moments for Ry, uniformly over
bounded time intervals.

» For Xt .= ]E‘ Ut — Ut‘y_yt = ]E|Rt — ﬁt‘ and r = Xt +_yt,
clever choice of r = r; implies

dO/,t S CT‘ In &t|ﬁtdt

Osgood's lemma (x In x—version of Gronwall) implies a = 0.



Coupling with the limit system

Still in the above second situation :

» Osgood’s lemma + Sznitman coupling (use the same PRM's
for the finite and the limit system)

E (JUM(0) = UF()| + [RI() — RE()) < CrN -3 7.

(very bad rate in N)

» Can be improved under the condition Ee®fo'nRo < o for some
0<a<1. Then

E (JUM() = U ()] + [RM() = RE()) < Crn-22, (1)

forall N > Np, t < T.

> Proof relies on the fact that V/(r) = e'"" is a Lyapunov
function for R;.



Coupling with the limit system

In the first situation : Uj = uo deterministic for all i, ¢ bounded and Lipschitz :

» Then UN(i) = UN(i) for all i, for all t > 0, where
o N [ ;
dUN = —BUNdt + N Z R["_(J)/O Lizep(un M (dt, dz).
J

» So we need a control of the deviations of the empirical mean
N jN:1 RN(j) from the limit expectation.

Theorem

Imposing exponential moments for the initial condition of R (i),
with exp high probability, for any fixed T > 0,

UN(i) and & ZJN:1 RN(j) stay in a N=Y/2%°—tube around their
associated limit quantity during [0, T].
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Study of the limit process



Study of the limit process in the first framework
Uo = o

— Let ug = ]EUt, It = ]ERt Then

{ duy = —furdt + ap(ut)redt } 2)
dre = —Andt+ ¢(up)dt
— Any stationary solution (u*, r*) of (2) must satisfy
Ar* = p(u*) and Bu* = ap(u®)r*. (3)
— This implies
u = ), (4)

— Of course, (0,0) is still an equilibrium.



But for ¢ sigmoidal, other equilibria might appear.
> r—null-cline is given by {r = +¢(u)}.
» u—null-cline {r = (8/a)®(u),u > 0} U{r = u = 0}, where
®(u) = u/ep(v).

Phase portrait :




And for a system that we have simulated :

100

Figure: Phase portrait of the limit equation, right figure : on a log-log
scale



So : for suitable choices of «, 8, \, a second stable equilibrium
(u™a r™M3aX) appears - which does not exist for the finite size
system.

Theorem (Deviations from the limit system)

Take some starting point (ug, ro) in the domain of attraction of
(u™a rma) and introduce

t; = t1(e) = inf{t : (u, rt) € Bo(u™, rm>)}.
Then for all N > Ny, forall1 <i<N,
LN
P(IUL() = u™| > 22 or |1 > RE() = r™™| > 22)

j=1
2./
< Ct1 e C¢ N-



Short

term memory

Suppose we expose the finite (but big) system to some initial
stimulus s.t. it is pushed into B.(u™®, r™ma).

Then this stimulus is switched off, and we start observing the
system.

Since the point is attracting and N large, the system is
attracted to a small neighbourhood of (u™3* r™@*) and stays
in this neighbourhood for a while.

We interpret this transient behavior as an expression of short

term memory.

In the long run, the system will finally get kicked out of this
neighbourhood and start rapidly decaying towards the all-zero
state.



Simulations

Simulations (1000 neurons) ODE numerical solutions
T T T T
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Figure: Phase plots on a log-log scale. Left, 5 trajectories (gray lines)
obtained by simulating a network of 1000 neurons. On both plots the
black curves show the null-cline of u (V shaped) and of r (inverted L

shape).



The same behavior should be true for the model with reset

e We studied a model without reset because the limit model is

deterministic dynamical system.
e However, simulations show that models with reset should behave

the same (still needs to be proven).

Markov Process Model G-L Model

Residual calcium
Residual calcium

100 01 1 100

1
Membrane potential



Short term memory and metastability

» All this should be related to metastability.
» Penrose and Lebowitz, Rigorous treatment of metastable
states in the van der Waals-Maxwell theory, JSP 1971
» A system starting in a metastable state is very likely to stay
there for a long time.
» Once it has left the vicinity of the metastable state, it is very
unlikely to return there.
» This happens after an unpredictable time - which is random,
and the “unpredictability” is expressed through the fact that it
must be exponentially distributed.

» Writing 7V = exit time of B.(u™, r™™), we believe that we
have convergence in law, as N — oo, of the rescaled exit times

N /E(TV) — exp(1).

Or a similar result for the last spiking time.



Exponentiality of the last spiking time

Fraction still alive

- ] ] | ] |
0 100000 200000 300000 400000 500000
Survival time

(Has only been rigorously proved for a slightly different model
including reset, without short term synaptic facilitation :
Locherbach + Monmarché, IHP 2022.)



Some ideas of the techniques used for our proofs

e We used deviation inequalities for martingales which are of the
form

N t o]
(07 . i
=1

e To control these pure-jump martingales having (a priori)
unbounded jumps, we use a Bernstein-type inequality = see next
slide.



Bernstein-type inequality for square integrable
martingales with unbounded jumps

—[M]: = ngt(AMs)z, and let < M >; be its predictable
compensator.
— To deal with the big jumps, one puts, for a fixed a,

HZ = (AM)1jamsapt < M >¢ .

s<t

Theorem (Dzhaparidze, van Zanten, SPA 2001)

1 2
P(M; >z, H? < L) < 2exp <—2zLi/J(aLZ)) : (5)

where ¥(x) = (1+ x/3)~* and M; = sup . |Ms|.



Some literature

» Duarte, A., Ost, G. A model for neuronal activity in the
absence of external stimuli. MPRF 2016

> Kistler, W.M., van Hemmen, L. Short-Term Synaptic Plasticity
and Network Behavior. Neural Computation 1999.

» Markram, H., Tsodyks, M. Redistribution of synaptic efficacy
between neocortical pyramidal neurons. Nature 1996
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» Duarte, A., Ost, G. A model for neuronal activity in the
absence of external stimuli. MPRF 2016

> Kistler, W.M., van Hemmen, L. Short-Term Synaptic Plasticity
and Network Behavior. Neural Computation 1999.
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Thanks for your attention - our paper has appeared in JSP 2020
and you can find it also on arXiv :
https://arxiv.org/abs/1903.01270
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