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It starts with Fuster in 1973

A delayed-response trial typically consists of the presenta-
tion of one of two possible visual cues, an ensuing period
of enforced delay and, at the end of it, a choice of motor
response in accord with the cue. The temporal separation
between cue and response is the principal element making
the delayed response procedure a test of an operationally
defined short-term memory function.



Fuster’s paradigm

Figures 1 and 4 of Fuster (1973).



Other delayed activities are observed

Figure 6 of Fuster (1973).



A “modern” version of Fuster’s paradigm

Adaptation of figures from Funahashi et al (1989) by Constantinidis
et al (2018).



A better view of the rasters

Funahashi et al (1989) Figure 3.



Changing the delay

Funahashi et al (1989) Figure 11.



What happens when mistakes are made?

Funahashi et al (1989) Figure 13.



Parametric working memory

Romo et al (1999) title and figure 1a.



Part of Romo et al (1999) figure 2.



First modelling efforts



Cellular substrate



Figure 1 of Wang et al (2006).



Models with short term facilitation



Membrane conductances (ion channels) generate
fluctuations

Figures 1 and 2 of Sigworth and Neher (1980).



Synapses generate even more fluctuations

Figure 1 of Pouzat and Marty (1998).



Short Term Plasticity - STP

• STP : change in the synaptic efficacy
• acts on timescales which are of the order of hundreds to
thousands of milliseconds
• comparable to the timescale of the spiking activity of the network
• 3 basic mechanisms of STP – here, we will only speak about
short-term potentiation.



Short Term Plasticity - STP

Figure: Curtis Neveu, CC BY-SA 3.0.



More on STP

Short-term potentiation due the residual calcium (presynaptic) :
- release of neurotransmitters is triggered by calcium, via calcium
channels.
- after transmitter release : free calcium gets pumped out of the
presynaptic terminal.
- but : this takes time.
- So : if a new action potential arrives, it can find a residual
calcium concentration that was not pumped out yet, leading to a
larger calcium concentration than after the first AP and to a larger
transmitter release.



Bibliographic context

• many papers have been devoted to STP since at least the last
two decades...
• probably starting with Markram and Tsodyks (1996), followed by
Kistler and van Hemmen (1999), Seeholzer et al. (2018) : study of
the effect of STP on “working memory”
• mostly : numerical studies of properties of STP within relatively
simple phenomenological models
• There is an interesting Scholarpedia article
http://www.scholarpedia.org/article/Short-
term_synaptic_plasticity
• For the biological aspects : Zucker and Regehr (2002).
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Our contribution

I We propose a simple mathematical model for short-term
potentiation due to the residual calcium

I in which short time memory can be described
I as tendency of the system to keep track of an initial stimulus
I Namely : by staying within a certain untypical region of the

space of configurations during a short but macroscopic amount
of time

I before finally being kicked out of this region and relaxing to
the true equilibrium of the process.

I Main technical tool: a rigorous justification of the passage
to a large population limit and study of the limit model
which is described by a 2d−dynamical system.



The model

I N interacting neurons (N will tend to +∞ later). Purely
excitatory case.

I For each neuron i , its membrane potential process UN
t (i) ≥ 0

accumulates the stimuli coming from the other neurons. These
stimuli are modulated by their current residual calcium values.

I Neuron i spikes at rate ϕ(UN
t (i)), that is,

P( i spikes in ]t, t + h]| history ≤ t) = ϕ(UN
t (i))h + o(h).

I ϕ is the spiking rate function of each neuron, Lipschitz,
ϕ(0) = 0, ϕ(x) > 0 for all x > 0.



I ZN
t (i) = counting process counting the spikes of i up to time

t.

I Each time i spikes, it gives an additional amount of potential
Wi→j to each neuron j in the system.

I Wi→j depends on time, since it depends on the current
residual calcium concentration RN

t (i) at that time :

Wi→j(t) =
α

N
RN
t−(i), α > 0

I Continuous leakage of potential continuously at constant rate
β > 0 :

UN
t (i) = e−βtUN

0 (i) +
α

N

N∑
j=1

∫
]0,t]

e−β(t−s)RN
s−(j)dZN

s (j).
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I The residual calcium concentration of a neuron is increased by
1 at each spike time of the neuron.

I Continuous leakage at constant rate λ > 0.

I Thus,

RN
t (i) = e−λtRN

0 (i) +

∫
]0,t]

e−λ(t−s)dZN
s (i),

for all t ≥ 0.
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First Remarks

I There is no reset to a resting potential after spiking.

I We are only dealing with the purely excitatory case, no
inhibition is present in our model. No mathematical problem
to add inhibitory synapses...

I Our model can be seen as a system of interacting pairs of
coupled Hawkes processes.

I No (direct) interactions in the residual calcium values RN
t (i) :

they are just functionals of ZN(i).
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Longtime behavior of the finite system

I Since ϕ(0) = 0, the all-zero state is an invariant state of the
system.

I Following the ideas of Duarte and Ost (2016), it is
straightforward to show :

Theorem
If ϕ is differentiable in 0, then the system stops spiking almost
surely. As a consequence, the unique invariant measure of the
process (UN

t ,R
N
t ) is given by δ0,0, where 0 ∈ RN denotes the

all-zero vector in RN .

I Situation changes as N →∞, that is, number of neurons
tends to infinity.
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Figure: 3D plot of 5 trajectories obtained by simulating a network of 1000
neurons from 5 different initial states.
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Heuristics : Form of the limit model I

• The membrane potentials of the N neurons evolve according to

dUN
t (i) = −βUN

t (i)dt +

α

N

N∑
j=1

∫ ∞
0

RN
t−(j)1{z≤ϕ(UN

t−(j))}M
j(dt, dz),

where the Mj , 1 ≤ j ≤ N are independent Poisson random
measures having intensity dtdz .
• Limit should be obtained by propagation of chaos : for large N,

α

N

N∑
j=1

∫ ∞
0

RN
t−(j)1{z≤ϕ(UN

t−(j))}M
j(dt, dz) ∼

E
∫ ∞

0
αRN

t−(1)1{z≤ϕ(UN
t−(1))}M

1(dt, dz).



Heuristics : Form of the limit model II

E
∫ ∞

0
αRN

t−(1)1{z≤ϕ(UN
t−(1))}M

1(dt, dz)

= E
(∫ ∞

0
αRN

t−(1)1{z≤ϕ(UN
t−(1))}dz

)
dt = αE[Rtϕ(Ut)]dt.

So : In the N →∞−limit, any neuron should behave as an
independent copy of

Ut = U0 − β
∫ t

0
Usds + α

∫ t

0
E[ϕ(Us)Rs ]ds,

Rt = R0 − λ
∫ t

0
Rsds +

∫ t

0

∫ ∞
0

1{z≤ϕ(Us−)}M(ds, dz).
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Heuristics : Form of the limit model III

Ut = U0 − β
∫ t

0
Usds + α

∫ t

0
E[ϕ(Us)Rs ]ds,

Rt = R0 − λ
∫ t

0
Rsds +

∫ t

0

∫ ∞
0

1{z≤ϕ(Us−)}M(ds, dz).

Remark
− Only randomness for the membrane potential process of a typical
neuron in the limit is in the initial condition U0.
− If U0 deterministic, then the spike counting process of a typical
neuron in the limit population t 7→

∫ t
0

∫∞
0 1{z≤ϕ(Us−)}M(ds, dz) is

an inhomogeneous Poisson process.



Heuristics : Form of the limit model IV

First questions :

I (Unique) Existence of the limit process?
I Does the finite system converge to the limit - and how

fast?
I Longtime behavior of the finite and the limit system?

I Answer to the first question : We will have to take care of the
product term E[ϕ(Us)Rs ]ds appearing in the limit dynamics of
U : it is non-Lipschitz.

I Answer to the second question : by coupling. See later. The
non-Lipschitz term might still cause some troubles...
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Well-posedness of the limit process
dUt = −βUtdt + αE[ϕ(Ut)Rt ]dt, dRt = −λRtdt +

∫∞
0 1{z≤ϕ(Ut−)}M(dt, dz).

First situation : U0 = u0 deterministic and ϕ(x) ≤ C
√
x for all

large x ≥ x0.

I Then Ut = ut deterministic, s.t. E[ϕ(Ut)Rt ] = ϕ(ut)E(Rt).
Putting rt = E(Rt), (ut , rt) solves

dut = −βutdt + αϕ(ut)rtdt, drt = −λrt + ϕ(ut)dt.

I Consider gt =
√
ut , then for large x ,

ġt ≤ −(β/2)gtdt + C (α/2)rtdt, ṙt ≤ −λrt + Cgtdt.

So : Existence of non-exploding solution whence uniqueness on
[0,T ] by a priori bounds on rt and gt .



Well-posedness of the limit process - BIS

Second situation : U0 random, but : existence of exponential
moments for R0 and ϕ bounded and Lipschitz.
I Truncation argument :

|ϕ(Ut)Rt − ϕ(Ũt)R̃t | ≤ rLϕ|Ut − Ũt |
+ Rt1{Rt>r}‖ϕ‖∞ + ‖ϕ‖∞|Rt − R̃t |.

I Existence of exponential moments for Rt , uniformly over
bounded time intervals.

I For xt := E| Ut − Ũt |, yt = E|Rt − R̃t | and αt = xt + yt ,
clever choice of r = rt implies

dαt ≤ CT | ln α̃t |α̃tdt

Osgood’s lemma (x ln x−version of Gronwall) implies α ≡ 0.



Coupling with the limit system
Still in the above second situation :

I Osgood’s lemma + Sznitman coupling (use the same PRM’s
for the finite and the limit system)

E
(
|UN

t (i)− U∞t (i)|+ |RN
t (i)− R∞t (i)|

)
≤ CTN

− 1
2 e

−CT .

(very bad rate in N)
I Can be improved under the condition EeaR0 lnR0 <∞ for some

0 < a ≤ 1. Then

E
(
|UN

t (i)− U∞t (i)|+ |RN
t (i)− R∞t (i)|

)
≤ CTN

− 1
2+ε , (1)

for all N ≥ N0, t ≤ T .

I Proof relies on the fact that V (r) = ear ln r is a Lyapunov
function for Rt .



Coupling with the limit system
In the first situation : U i

0 = u0 deterministic for all i , ϕ bounded and Lipschitz :

I Then UN
t (i) = UN(i) for all i , for all t ≥ 0, where

dUN
t = −βUN

t dt +
α

N

∑
j

RN
t−(j)

∫ ∞
0

1{z≤ϕ(UN
t−)}M

i (dt, dz).

I So we need a control of the deviations of the empirical mean
1
N

∑N
j=1 R

N
t (j) from the limit expectation.

Theorem
Imposing exponential moments for the initial condition of RN

0 (i),
with exp high probability, for any fixed T > 0,
UN(i) and 1

N

∑N
j=1 R

N
T (j) stay in a N−1/2+δ−tube around their

associated limit quantity during [0,T ].
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Study of the limit process in the first framework
U0 = u0

− Let ut = EUt , rt = ERt . Then{
dut = −βutdt + αϕ(ut)rtdt
drt = −λrtdt + ϕ(ut)dt

}
. (2)

− Any stationary solution (u∗, r∗) of (2) must satisfy

λr∗ = ϕ(u∗) and βu∗ = αϕ(u∗)r∗. (3)

− This implies
u∗ =

α

βλ
ϕ2(u∗). (4)

− Of course, (0, 0) is still an equilibrium.



But for ϕ sigmoidal, other equilibria might appear.

I r−null-cline is given by {r = 1
λϕ(u)}.

I u−null-cline {r = (β/α)Φ(u), u > 0} ∪ {r = u = 0}, where
Φ(u) = u/ϕ(u).

Phase portrait :



And for a system that we have simulated :

Figure: Phase portrait of the limit equation, right figure : on a log-log
scale



So : for suitable choices of α, β, λ, a second stable equilibrium
(umax , rmax) appears - which does not exist for the finite size
system.

Theorem (Deviations from the limit system)
Take some starting point (u0, r0) in the domain of attraction of
(umax , rmax) and introduce

t1 = t1(ε) = inf{t : (ut , rt) ∈ Bε(u
max , rmax)}.

Then for all N ≥ N1, for all 1 ≤ i ≤ N,

P(|UN
t1 (i)− umax | ≥ 2ε or | 1

N

N∑
j=1

RN
t1 (j)− rmax | ≥ 2ε)

≤ Ct1e
−cε2

√
N .



Short term memory

I Suppose we expose the finite (but big) system to some initial
stimulus s.t. it is pushed into Bε(u

max , rmax).

I Then this stimulus is switched off, and we start observing the
system.

I Since the point is attracting and N large, the system is
attracted to a small neighbourhood of (umax , rmax) and stays
in this neighbourhood for a while.

I We interpret this transient behavior as an expression of short
term memory.

I In the long run, the system will finally get kicked out of this
neighbourhood and start rapidly decaying towards the all-zero
state.



Simulations

Figure: Phase plots on a log-log scale. Left, 5 trajectories (gray lines)
obtained by simulating a network of 1000 neurons. On both plots the
black curves show the null-cline of u (V shaped) and of r (inverted L
shape).



The same behavior should be true for the model with reset

• We studied a model without reset because the limit model is
deterministic dynamical system.
• However, simulations show that models with reset should behave
the same (still needs to be proven).



Short term memory and metastability

I All this should be related to metastability.
I Penrose and Lebowitz, Rigorous treatment of metastable

states in the van der Waals-Maxwell theory, JSP 1971
I A system starting in a metastable state is very likely to stay

there for a long time.
I Once it has left the vicinity of the metastable state, it is very

unlikely to return there.
I This happens after an unpredictable time - which is random,

and the “unpredictability” is expressed through the fact that it
must be exponentially distributed.

I Writing τN = exit time of Bε(umax , rmax), we believe that we
have convergence in law, as N →∞, of the rescaled exit times

τN/E(τN)→ exp(1).

Or a similar result for the last spiking time.



Exponentiality of the last spiking time

(Has only been rigorously proved for a slightly different model
including reset, without short term synaptic facilitation :
Löcherbach + Monmarché, IHP 2022.)



Some ideas of the techniques used for our proofs

• We used deviation inequalities for martingales which are of the
form

MN
t =

α

N

N∑
j=1

∫ t

0

∫ ∞
0

RN
s−(j)1{z≤ϕ(UN

s−(j))}[M
j(ds, dz)− dsdz ].

• To control these pure-jump martingales having (a priori)
unbounded jumps, we use a Bernstein-type inequality ⇒ see next
slide.



Bernstein-type inequality for square integrable
martingales with unbounded jumps

−[M]t =
∑

s≤t(∆Ms)2, and let < M >t be its predictable
compensator.
− To deal with the big jumps, one puts, for a fixed a,

Ha
t :=

∑
s≤t

(∆Ms)21{|∆Ms |>a}+ < M >t .

Theorem (Dzhaparidze, van Zanten, SPA 2001)

P(M∗t ≥ z ,Ha
t ≤ L) ≤ 2 exp

(
−1
2
z2

L
ψ(

az

L
)

)
, (5)

where ψ(x) = (1 + x/3)−1 and M∗t = sups≤t |Ms |.



Some literature

I Duarte, A., Ost, G. A model for neuronal activity in the
absence of external stimuli. MPRF 2016

I Kistler, W.M., van Hemmen, L. Short-Term Synaptic Plasticity
and Network Behavior. Neural Computation 1999.

I Markram, H., Tsodyks, M. Redistribution of synaptic efficacy
between neocortical pyramidal neurons. Nature 1996

Thanks for your attention - our paper has appeared in JSP 2020
and you can find it also on arXiv :
https://arxiv.org/abs/1903.01270
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