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CNRS UMR 8118
45, rue des Saints Pères
75006 Paris
France.
Tel: +33 (0)1 42 86 38 31
Fax: +33 (0)1 42 86 38 30
e-mail: christophe.pouzat@biomedicale.univ-paris5.fr

1



Summary

We have developed a simple and expandable procedure for classification and

validation of extracellular data based on a probabilistic model of data gener-

ation. This approach relies on an empirical characterization of the recording

noise. We first use this noise characterization to optimize the clustering of

recorded events into putative neurons. As a second step, we use the noise

model again to assess the quality of each cluster by comparing the within-

cluster variability to that of the noise. This second step can be performed

independently of the clustering algorithm used, and it provides the user with

quantitative as well as visual tests of the quality of the classification.
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Introduction

Understanding brain codes will, as a prerequisite, likely require the simultane-

ous sampling of large populations of neurons. While many powerful imaging

techniques have been developed (e.g., membrane voltage, Wu et al, 1994;

intrinsic signal, Frostig et al, 1990; fMRI, Ogawa et al 1992), extracellular

recording remains the only method that provides both single neuron and

single action potential resolution from large and distributed samples. Multi-

neuron extracellular recordings, however, are useful only if the spikes gener-

ated by different neurons can be sorted and classified correctly. Although a

given neuron may generate spikes with unique extracellular signal features,

making the identification issue trivial, in most cases, the electrophysiologist

must, from noisy and ambiguous primary data, answer the following ques-

tions:

1. What is the waveform generated by each neuron, or unit, on each

recording site?

2. How many units were sampled by the recording?

3. On what objective basis should an individual event, or spike, be clas-

sified as originating from one of the units sampled?

4. How should superpositions, due to the nearly simultaneous occurrence

of two (or more) spikes, be resolved?

5. How likely are misclassifications, that is, how often is an event gen-

erated by neuron A classified as originating from neuron B, and vice

versa?

6. How can we test and quantify objectively the reliability of our classifi-

cation procedure?
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The first three questions have been the focus of much investigation and

several methods have been proposed (reviewed by Lewicki, 1998), such as

principal component analysis (Glaser and Marks, 1968), Bayesian classifica-

tion (Lewicki, 1994), clustering based on the Expectation-Maximization al-

gorithm (Sahani, 1999), template matching (Millecchia and McIntyre, 1978),

wavelet transform based methods (Letelier and Weber, 2000; Hulata et al,

2000) and clustering methods that use spike time information to determine

cluster boundaries (e.g. Fee et al, 1996b). Question 4 has been directly ad-

dressed in two studies (Atiya, 1992 and Lewicki 1994). The reliability of some

of these spike sorting procedures has also recently been tested empirically, us-

ing simultaneous extra and intracellular recordings (Wehr et al, 1999; Sahani,

1999; Harris et al, 2000). These later studies fail to address the main con-

cern of the present paper: how can one evaluate, from the extracellular data

alone, the reliability of the sorting procedure? The potential causes of unre-

liable spike-sorting are numerous; several are described in detail by Lewicki

(1998). According to Lewicki (1998, p. 74), “Many algorithms work very well

in the best case, when most assumptions are valid, but can fail badly in other

cases. Unfortunately, it can be difficult to tell which circumstance one is in”.

The simple tests we present here are an attempt to address this dilemma.

In the body of the paper, we will provide a detailed description of our

methods, as well as an illustration of their use on in vivo recordings from

locust antennal lobe neurons. We begin by presenting a brief description of

the experimental procedure including data collection. Next, we describe the

method for generating a model of the experimental noise and for testing the

accuracy of the model. We then proceed to show how that model can be

used first to cluster spikes, and then to test the quality of the classification.

Finally, we run the entire procedure on an example of real data.
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Methods

Data collection and representation

Preparation and recordings

All experiments were carried out on adult locusts (Schistocerca americana)

of both sexes, taken from a crowded colony and prepared as described in

Laurent and Naraghi (1994).

Neurons were recorded with silicon probes from the Center for Neural

Communication Technology of the University of Michigan (Drake et al, 1988).

A diagram of the probe tips with 16 recording sites is shown on Fig. 1A. The

probe was connected to a custom made impedance matching preamplifier.

The preamplifier was connected to two 4 channels differential AC amplifiers

(AM model 1700 AM Systems Inc.; Carlsborg, WA). The signals were band-

pass filtered between 300 and 6000 Hz and amplified 10,000 times. Data were

acquired at 15k samples per sec. using a 12 bits A/D card (Win30 D, United

Electronics Inc., MA).

Data with a good signal to noise (S/N) ratio were collected relatively

close to the surface (50–100 µm) of the antennal lobe (AL). Spikes recorded

in the AL were attributed to the activity of projection neurons (PNs), as the

AL contains only two neuron populations: the PNs, which are the output

neurons and fire Na+ action potentials and the local neurons (LNs), which

are axonless and fire no Na+ action potential (Laurent and Davidowitz,

1994). We were unable to record clear spikes with the silicon probe from

the antennal nerve or its projections into the AL. Afferent axons are very

small and numerous (90,000), precluding clear discrimination of single neuron

signal from noise.
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Data processing

Data were analyzed offline on a PC computer (Pentium III 550 MHz, 256

MB RAM) using Igor (WaveMetrics, Lake Oswego, OR) or Scilab (a free

Matlab-like software package available at: www-rocq.inria.fr/scilab). All

the routines were custom developed (or are freely available on the world-

wide-web, see below) and are available upon request.

Event detection

For the detection stage only, the traces were first digitally smoothed (3-point

Box Filter). Events (i.e., putative spikes) were then detected as local maxima

with a peak value exceeding a preset threshold. In cases where the spike peak

occurred at slightly different times on different recording sites, only one time

value was used: the time from the site with the largest peak amplitude. The

detection threshold was set as a multiple of the standard deviation (SD) of

the whole trace. We typically used thresholds between 2.25 and 3.5 SDs.

Event representation

Detected events can be represented in many different ways (Lewicki, 1998).

Yet, the choice of a representation can strongly influence both the speed and

the reliability of the classification procedure. In general, one measures a set

of D parameters for each event; each event thus becomes a point in a D

dimensional space. This space is called event space. Our goal was to opti-

mally predict the effect of recording noise on the distribution of points that

represent events in event space. Unfortunately, several common parameter

choices, such as peak and valley amplitudes or half width are computed by

differentiating the raw data. This makes signal-noise separation difficult.
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We therefore chose to represent each event as follows. A sweep of d con-

secutive sample points around the peak of the event was examined from each

recording site. For our setup, we set d=45 (equivalent to 3ms), with the peak

aligned to the 15th position. The sweeps were then concatenated. Therefore

if one labels the successive amplitudes of an event on site A, A1A2...A45,

on site B, B1B2...B45, on site C, C1C2...C45 and on site D, D1D2...D45, the

vector representing the event was:

e = (A1...A45B1...B45C1...C45D1...D45)
T ,

where the superscript T means transpose. For our purposes, therefore, the

dimensionality of the event space, D, is 180 (4x45). It will become clear

that with this choice of event space, the effect of noise on the distribution

of events can be easily predicted. Note that our initial peak detection for

event selection introduces some sampling-induced jitter. We will ignore this

for now and show later how it can be canceled.

General model for data generation

Following Lewicki (1994) and Sahani (1999) we use an explicit model for data

generation. The general assumptions in our model are:

1. The spike waveforms generated by a given neuron are constant.

2. The signal (i.e. the events) and the noise are statistically independent.

3. The signal and noise sum linearly.

4. The noise is well described by its covariance matrix.

Assumption 1 is a working approximation, appropriate for some doc-

umented cases (Fee et al, 1996a, Fig. 2; Harris et al, 2000, Fig. 4). It also
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applies to our recording conditions (see results). Assumptions 2 and 3, stated

for completeness, are implicit in most already available spike-sorting meth-

ods and mean that the amplitude distribution of the recorded events can

be viewed as the convolution of a “pure” signal with the noise distribution.

We can restate our hypothesis as follows: in a noise free recording, all events

generated by one unit would give rise to the same point in event space. In

a noisy recording, however, events generated by one unit would give rise to

a cloud of points centered on a position representing the “ideal” waveform

of the unit. The distribution of the points should be a multivariate Gaussian

whose covariance matrix would be the noise covariance matrix regardless of

the position of the unit in event space.

Noise model

Noise covariance matrix

To measure the statistical properties of the noise, we began by removing

from the raw traces all the detected events (i.e., all the d-point sweeps)

and concatenating all the inter-event traces. We call the resulting waveforms

“noise traces” (see Fig. 1D). The auto-correlation function was then calcu-

lated for each recording site (diagonal, Fig. 1E), as were the cross-correlation

functions between all pairs of sites (Fig. 1E). These correlations were only

computed within continuous stretches of noise (i.e., the discontinuities in the

noise traces due to eliminated spikes were skipped). In addition to recording

noise, these cross-correlations will also account for any cross-talk between

recording channels (Zhu et al, 2002).

In event space the auto- and cross-correlation functions translate into the

noise covariance matrix which was build by blocks from these functions as
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follows (we refer here to the four recording sites as site A, B, C and D):



AA AB AC AD

BA BB BC BD

CA CB CC CD

DA DB DC DD


= Γ,

where each block is a symmetric Toeplitz matrix build from the “correspond-

ing” correlation function (e.g., AA is a 45x45 matrix whose first row is the

noise autocorrelation function on site A, AB is a 45x45 matrix whose first

row is the noise cross-correlation function between sites A and B, etc). BA

is symmetrical to AB1.

Noise whitening

In order to simplify calculations and reduce the computational complexity of

our algorithm, we chose to make a linear transformation on our event space

(and therefore on all the detected events). The transformation matrix, U , is

chosen specifically so that after transformation, the variance due to noise will

be uncorrelated across dimensions (i.e., the noise covariance matrix will be

the identity matrix, I). Mathematically, U has the property that

Γ−1 = UT U, (1)

1For readers unfamiliar with Toeplitz matrices, we illustrate the concept using the
simple case where there are only 3 sample points per sweep. If the auto-correlation function
on site A is the vector (α β γ) , then AA would be:

AA =

 α β γ
β α β
γ β α

 ,

that is, AAi+1,j+1 = AAi,j , for i ≥ j.
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where Γ is the noise covariance matrix in the original event space. A trans-

formation matrix, U , with this property will always exist as long as the

covariance matrix (Γ) is symmetric and positive definite (which it is by def-

inition). The matrix U is obtained from Γ−1 with a Cholesky decomposition

(Brandt, 1999, pp 479-484). A critical feature of the noise-whitened event

space is that if our assumption (4) is correct (that the noise is well described

by its second-order statistics), then the variance due to noise will be the same

in every dimension with no correlations across dimensions (i.e., the cloud due

to noise should be a hypersphere).

Test of noise model

To test assumption (4), we generated a large sample of d-point long events

from the noise traces. These “noise events” were taken from a different por-

tion of the noise traces than was used to calculate the noise covariance matrix.

Since these events should contain all “noise” and no “signal” (i.e., no spikes),

these points will form a cloud around the origin in the noise-whitened event

space and the distribution of these points around the origin will be fully de-

scribed by the true statistics of the recording noise. We can now test if the

second-order noise statistics (the covariance matrix) are sufficient in describ-

ing the actual noise distribution. We do this by computing the distribution of

Mahalanobis distances (just the euclidean distance squared in noise-whitened

space), between each noise event and the origin. In a white, Gaussian dis-

tribution, the distribution of Mahalanobis values will be a χ2 distribution

with D degrees of freedom. For our data, as we will describe in the Results

section, this is indeed the case.

Testing the second-order statistics is not a guarantee that the noise dis-

tribution does not have significant higher-order moments. To check for this
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possibility, we measured the third momentum distribution from another pool

of whitened noise events. We randomly selected 500 (or more) triplets of coor-

dinates among the 1803 possible ones (for an event space of 180 dimensions).

If we write ni = (ni,1, ..., ni,180)
T the ith sweep of the noise sample and if,

for example, (28, 76, 129) is one of the triplets, the third moment for that

triplet is obtained as follows (assuming a noise sample of size 2000):

1

2000

2000∑
i=1

ni,28 · ni,76 · ni,129. (2)

We will show in the Results that for our data, this statistic was not signifi-

cantly different from zero.

Noise model-based clustering

Specific data generation model

If our first assumption about data generation is correct (that spike waveforms

are constant), the distribution of events in event space, after the linear coor-

dinate transformation (Eq. 1), should be a set of clouds of identical shapes

(hyperspheres), each centered on its underlying unit2. Our goal is now to de-

termine the number of such clouds and the position of their centers in event

space.

To this end, we introduce a specific data generation model (M ) that ex-

tends the general data generation model by specifying the number of units,

K, their waveforms and their discharge frequencies. In event space, the wave-

forms of the K units translate into a set of K vectors uj (joining the origin

to the point representing unit j, j ∈ {1, ..., K}). Our goal is to find the model

2We should expect some outliers as well, due to nearly coincident spikes.
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that gives the best explanation of the data sample S = {e1, ..., eN}. A com-

mon and efficient way to do this is to find the model which maximizes a

posteriori the probability to observe the sample actually observed, i.e., to

maximize the likelihood function (Brandt, 1999; Bishop, 1995).

The likelihood function is computed under our assumptions and in the

noise-whitened coordinate system as follows. We first compute the probabil-

ity (density) for unit uj to have generated event ei, p(ei|uj). For that we

introduce the residual vector ∆ij:

∆ij = ei − uj, (3)

then

p(ei|uj) =
1

(2π)
D
2

· exp(−1

2
· ∆T

ij∆ij). (4)

The probability Pi for the model to have generated event ei can now be

written as a weighted sum of terms like (4), one for each of the K units of

the model:

Pi =
K∑

j=1

πj · p(ei|uj), (5)

where πj is the probability for unit j to occur, i.e., the ratio of the number

of events from unit j to the total number of events in the sample, N . The a

posteriori probability to observe the sample is then, assuming independence

of the N sample elements, the product of the probabilities to observe each

one of them separately:

P(S; M) =
N∏

i=1

Pi. (6)

The likelihood function is simply the logarithm of P :

L(S; M) =
N∑

i=1

ln(Pi). (7)
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Several iterative algorithms exist to maximize L (Redner and Walker,

1984; McLachlan and Krishnan, 1997). We used the Expectation-Maximization

algorithm (EM algorithm, formalized by Dempster et al, 1977, and introduced

in the electrophysiological literature by Ling and Tolhurst, 1983). The EM

algorithm is very simple in the present context, fairly intuitive (Bishop, 1995)

and its convergence to local maxima has been proven for the present model

(without outliers in the sample: Boyles, 1983; Wu, 1983). Moreover, for our

typical data samples, outliers do not appreciably affect the speed or accuracy

of the algorithm.

The standard EM algorithm finds the ”best” model for a given number

of units. It does not provide, by itself, the actual number of units, K, present

in the data sample. Several criteria have been proposed in the statistical lit-

erature to perform this task (for an overview, see Fraley and Raftery, 1998

(especially section 2.4), and Biernacki and Govaert, 1998). Among the meth-

ods we tried, however, we found that the Bayesian Information Criterion

(BIC), proposed by Schwarz (1978), worked well for our data (where most

clusters are well separated in event space). The BIC penalizes an increase

in the number of components by subtracting from L a term proportional to

ν · ln(N), where N is the number of sample events and ν is the number of

model parameters. We then simply keep the model with the value of K which

maximizes the BIC3 (Fraley and Raftery, 1998).

3A free software package is available that includes an implementation of the EM
algorithm with the BIC. “Mixmod”, written in C++ by Biernacki, Celeux, Govaert,
Langrognet and Vernaz is available at the following address: www.inrialpes.fr/is2/
software/MIXMOD/.
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Event classification

Once a model is established, we attribute each event, ei to one of the K units,

by finding the j that minimizes |∆ij|2. The rationale is the following: if unit

uj has indeed generated event ei then the components of the residual vector

∆ij are random numbers drawn from a multivariate Gaussian distribution

and the probability to observe |∆ij|2 = ∆T
ij ·∆ij is given by a χ2 distribution

with D degrees of freedom (assuming noise whitening has been performed).

By choosing the unit producing the smallest |∆ij|2 we are simply choosing

the unit with the highest probability to have generated the event4.

For some events, even the smallest |∆ij|2 was very unlikely given the

χ2 distribution (e.g., in the 99th percentile). In these cases, we looked for

the superposition of any two units, e.g. uj and ul, which gave the smallest

|∆i,j+l|2 value. To this end we tested all possible pairs of units and all relative

timings of their peaks. This was easily computed for we knew the entire

waveform of each unit. This approach was formalized by Atiya (1992) and an

alternative method to resolve superpositions has been proposed by Lewicki

(1994). If, after this step, we still did not find a small enough |∆i,j+l|2, we

classified the event as an outlier.

Model verification tests

No matter how much effort is devoted to optimizing model-generation and

event-classification procedures, in the end it is always possible for the results

of a spike-sorting routine to be sub-optimal. In many recordings there may be

pairs of neurons whose spike waveforms are close enough (with respect to the

4Strictly speaking, we should choose the unit giving the largest product πj · p(ei|uj),
but it turned out that our units were typically far apart. Therefore a unit ul which did
not generate ei gave a |∆il|2 value much too large, which is equivalent to a negligible
πl · p(ei|ul) value.
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size of the noise) that their events could never be accurately distinguished. In

such a case, some algorithms may lump the pair into one cluster and others

might split such a pair in two. In either case, an experimenter would like to

detect such a situation, and if the pair of units is really inseparable, discard

the spikes from those cells or treat them as multi-unit data. Furthermore,

due to the complexity of the task, even the best algorithms will occasion-

ally generate incorrect models when given reasonable data. Again, this is a

situation one would like to detect.

For this reason, we developed three tests for assessing the quality of spike-

sorting results on a cluster-by-cluster basis. Since we have a quantitative

model of data generation, we can use it to make detailed predictions about

the properties of our classified data. Here we illustrate the tests’ principles

by applying them to simulated data. In the Results section we will present

the same test applied to real data.

Consider the simple situation in which we record from a single site and

where only two units, u1 and u2, are active. Assume also that both units

fire at low rates, so that nearly simultaneous spikes from unit u1 and u2 are

rare. The original waveforms of the two units (used to generate the data)

are shown in Fig. 2A. During our “recording session”, we sample 500 events,

superimposed in Fig. 2B (left). Each event corresponds to one of the units,

to which random “noise” drawn from a Normal distribution has been added

to each of the 45 sampling points. This artificial data generation procedure

is such that our model assumptions apply exactly to the sample (in this case,

the noise is already white). In this sample, 300 events have been generated

from unit u1 and 200 from unit u2.

For the first two tests, we will consider two potential models of data

generation. In the first case, all events of the sample are (incorrectly) classified
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as coming from a single unit; in the second case, the data generation model

contains the two units u1 and u2, and all events are correctly classified.

The SD test

The mean event and the SD computed from all 500 events of the sample are

shown on the right of Fig. 2B. Note how the SD varies, reaching maxima at

times where the two waveforms (u1 and u2) differ the most. Based on our

initial assumptions, we would predict that this “cluster” of 500 events could

not all come from the same unit. If this were the case, all the spike-to-spike

variance would be due to noise, which should be constant throughout the

time course of the spike.

If we now split the sample into two correctly classified sub-samples, one

consisting of the 300 events generated by unit u1 and the other from the

200 events generated by unit u2, the SD computed on the corresponding

subsamples is now “flat”, centered on the background noise level (Fig. 2C

& D). This matches precisely with what our model predicts for correctly

classified clusters: all the spike-to-spike variability is due entirely to noise.

In this way, we can use this as a qualitative test of both the accuracy of

the model and a proper classification of the events5. After the events have

been classified, the SD of every cluster can be tested. Any cluster whose SD

values deviate significantly from the SD of the noise can be eliminated from

further analysis (or at least scrutinized more closely). In our experience, this

test is quite sensitive and can routinely detect clusters that contains multiple

units, even if those units are not well-separable (see Projection test).

As a final note, this test will also reliably indicate if a significant number of

spikes from a small unit were not detected. This situation can arise when the

5This test was initially proposed, in a different context, by Jack et Al, 1981.
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peak voltage of a unit’s waveform is just at the spike detection threshold. In

such a case, a significant percentage of that unit’s events will not be detected

due to noise fluctuations. The spikes from this unit that are detected will

have positive noise values near the peak, and therefore less noise variability

along this portion of the waveform. This situation is therefore characterized

by a “dip” in the SD near the peak of the waveform, and we routinely observe

this effect empirically. Hence, a cluster that exhibits a constant SD, equal to

that of the noise, is consistent with a good model together with correct spike

detection and classification.

The χ2 test

In this test we test the prediction that each cluster of events forms a D-

dimensional Gaussian distribution. For every unit, uj, we can compute the

distance from it to all events, ei, that were attributed to it. If the prediction

is accurate, the distribution of the squares of these distances should follow a

χ2 distribution with D degrees of freedom.

The test is illustrated in Fig. 3A. In the first case (one-unit model), we

take the sample mean as an estimate of the ideal underlying unit. We illus-

trate the computation of the residual of event #400 with such a model (Fig.

3Ai). Because we have 500 events in the sample, we obtain 500 χ2 values.

In Fig. 3Aii we plotted the cumulative distribution of these 500 χ2 values

(continuous gray curve). This empirical distribution can be compared with

the expected one (dashed black curve). In this case, the expected distribution

is a χ2 distribution with D−1 degrees of freedom (i.e., 44), for we have used

the average computed from the same sample.

In the second case (two-unit model), we take the averages computed from

the two subsamples as estimates of the underlying units (Fig. 2C & D). The
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classification of event #400 is illustrated in the middle part of Fig. 3Ai. In

this case, the first value suggests an unlikely event (i.e., the noise would

not be expected to cause such a large deviation from the underlying unit)

so the event is classified as originating from unit u2. We thus obtain from

the 500 events, two empirical χ2 distributions (Fig. 3Aii), one corresponding

to subsample 1 (red curve) and one corresponding to subsample 2 (blue

curve). It is clear that these two empirical distributions are much closer to

the expected one. A good classification (together with a good model) should

thus yield K distributions, for a model with K units, centered on a single

predictable χ2 distribution. Like the SD test, this test is especially sensitive

to the grouping of two similar-looking units into a single cluster and will

produce a significant rightward shift in such situations.

The projection test

According to our model assumptions, the events generated by a given unit

should form a cloud of points centered on the unit in event space. The precise

distribution of these points should be, after noise-whitening, a multivariate

Gaussian with a covariance matrix equal to the identity matrix. Moreover,

the projections of two subsamples onto the axis joining the two units which

generated them should form two Gaussian distributions of SD=1 centered

on the two units. We can now quantitatively define the distinguishability of

the two units by setting a limit on the acceptable overlap between theses two

distributions (overlap between distribution and event misclassifications are

indeed equivalent). For instance we can decide that if more than 5% of the

events coming from unit u1 or u2 are misclassified, then the two units are

not distinguishable.

Figure 3B illustrates the procedure with simulated event #50. As before,
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we are working in a 45 dimensional space. Fig. 3Bi shows template u1, event

#50 and template u2 as voltage traces over time. Fig. 3Bii illustrates the

same objects in the plane in event space that contains all three. In this

plane, the straight line going through u1 and u2 has been drawn (u is a point

in event space and u is a vector joining the origin to u) as well as the unit

vector going from u1 to u2. We can compute the projection onto the (u1 u2)

axis for each of the 500 events of the sample. Then according to our model

assumptions the empirical distribution of the projections should be given by

two Gaussian with SD=1, centered on points u1 and u2, respectively. If two

units can be reliably distinguished the two distributions will not overlap. The

amount of overlap between these two Gaussian is simply a function of their

Euclidian distance, making it easy to convert misclassification percentage

into a minimum inter-unit distance, below which a pair of units is considered

non distinguishable (e.g., assuming the same frequencies for the 2 units, a

fraction of misclassification smaller than 5% requires a separation of 2.5 SDs

between the means of the distributions; similarly, a 5 SDs separation would

yield a 1% misclassification fraction).

A second feature of this test is that it can also detect whether a single unit

has been incorrectly split into two different clusters. Consider the scenario

where the spikes from u1 are split into two different clusters with centers

(u′1 and u′′1). The projection between these two clusters, will form a single

Gaussian distribution centered at u1, rather than the two Gaussians predicted

by the test. In this way, the projection test is most sensitive at detecting

whether two clusters are inseparably close and whether a single unit has

been split among two different clusters.
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Sampling jitter cancellation

One final problem to solve originates from the limited sampling frequency

used during data acquisition. It is obvious that the computer’s clock is not

synchronized with the neurons’ firing: the events will be sampled with a ran-

dom delay between their peak and the nearest tick of the computer’s clock.

While this effect may sound like a purely theoretical concern, it can have

a significant effect on the tests we describe under standard recording condi-

tions. This sampling effect and its effects on the SD and χ2 test are illustrated

in Fig. 4. We will consider this problem in the absence of recording noise,

although the problem (and its solution) exists in “real”, noisy recordings (see

below).

An ideal waveform from a single recording site is considered in Fig. 4A

and B. The ideal waveform is made of 450 points; we show two events ob-

tained by sampling the ideal waveform once every 10 points (Fig. 4A1, only

the central part of the waveform is shown). The peak of event 1 occurs at

point 19 (from the origin of the sample), while the peak of event 2 occurs at

point 18 (Fig. 4A1). When we build the sweeps associated with the sampled

events (Fig. 1B) we align them on their peaks, causing a slight distortion,

illustrated in Fig. 4A2. We see here that two sampled events arising from

the same underlying waveform have different onsets and offsets. The effect of

this sampling jitter on the SD is illustrated in Fig. 4A3. One hundred such

events were generated by sampling the ideal waveform, drawing each sweep

origin from a uniform, discrete, distribution between points 1 and 10 on the

ideal waveform. The sweeps were aligned on their peaks and the mean event

and SD were computed. A marked increase of the SD is obvious around the

times when the derivative of the mean event is significantly different from

0. It is easy to show that this SD increase is proportional to the derivative
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of the underlying waveform multiplied by the sampling period. This SD in-

crease caused by the sampling jitter will also result in an increase in the χ2

obtained after template subtraction (Fig. 3A) and corrupt our model’s tests.

We must therefore cancel the sampling jitter.

This is done simply by using the optimal interpolation filter to recover

the “full” sweeps from the sampled sweeps, before realignment. This filter

is the sinc function ( sin(x)
x

) with a period equal to twice the sampling pe-

riod (Papoulis, 1980). Fig. 4B2 illustrate this interpolation procedure and

its result. The 45 sample long sweep of Fig. 4B1 has been used to build a

450 points long “interpolated” sweep (red curve); the ideal waveform used

to generate the 45 sample long sweep is shown as well (black curve) and the

shift between the two curves is precisely the sampling jitter.

In practice, before running the tests we canceled jitter on every event clas-

sified as belonging to a single cluster (i.e., no outliers or superpositions). For

each such event, ei, from cluster uj, we first interpolated 9 points in between

each true sample point to create an ”ideal” waveform. We then aligned this

”ideal” wave to its cluster mean by minimizing the resulting |∆ij|2. This is

illustrated with real data in Fig. 4C. Fig. 4C1 shows the events before jitter

cancellation and Fig. 4C2 shows the mean event and the SD. Fig. 4D1 shows

the same events after jitter cancellation (performed simultaneously on the 4

recording sites) and Fig. 4D2 the corresponding mean event and SD. The SD

increase during the rising phase disappeared, replaced here by a slight over-fit

(dip in the SD). Fig. 4E shows the cumulative squared distances distributions

before (thin line) and after (thick line) jitter cancellation.

Finally, caution should be used when working with short sweeps, that is,

sweeps whose amplitudes at the ends are not at baseline level. Performing a

sinc function interpolation in such cases will generate artifactual wiggles on
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the interpolated sweeps. If one wants to work with such short sweeps a cubic

spline interpolation should be preferred.
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Results

We now illustrate the generation and testing of a model using data recorded

from the locust antennal lobe.

Data properties

Events

A typical, 1s long stretch of data recorded from the locust antennal lobe and

band-pass filtered (see methods) is shown in Fig. 1A. Traces 1-4 originate

from the four neighboring recording sites of one of the four tetrodes in the

probe shown above. Three milliseconds around each detected event have been

colored red. The remainder of each trace, shown alternately in blue and black

will, from now on, be considered as noise.

The seven events detected in these four traces are shown in Fig. 1B.

Each sweep is 3 milliseconds (ms) long (45 data samples) with the peak of

each event at 1 ms. Fig. 1C shows the mean (left) and corresponding SD

(right) computed from all 1493 events so detected during 60 s of continuous

data acquisition. The horizontal dotted line (right panel) indicates the SD

expected from the background noise. Marked excesses of the SD are observed

around the valleys or peaks of the mean event. Such excesses could have two

non exclusive origins:

1. Two or more units with different spike shapes are present in the data

2. A given unit generates spikes of variable amplitudes or shapes

Causes (1) and (2) should generally depend on the cell types present as

well as on the region of the neuron from which the signal is recorded. Neurons

producing high frequency bursts for example, often exhibit spikes of decaying
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amplitude during a burst (e.g. Fee et al, 1996a and Harris et al, 2000). Our

model assumes that most of the SD excess can be accounted for by cause (1).

Noise statistical properties

The noise auto- and cross-correlation functions (Fig. 1E) were obtained as

described in the methods. Note their decay time is typically less than 1 ms.

This decay time is similar to the event duration partly because the noise

contains many spikes, too small to be detected as events.

Validation of the second-order noise description

It is clear that given a time dependent signal, one can always compute a

correlation function (a single auto-correlation function if one records a sin-

gle channel and several auto- and cross-correlation functions if one records

several channels). We compute these functions in order to build the noise

covariance matrix and we assume that this is a (relatively) complete descrip-

tion of the noise statistics. Nevertheless, one can imagine plausible scenarios

where this would not be the case. If, for example, the background noise is

non-stationary (e.g. Fee et al, 1996a), several noise covariance matrices could

be required successively to describe the noise, while a single one could not

be an accurate model. Alternatively, the noise could be stationary, but with

third- or higher-order moments.

One way to test that the covariance matrix is a full description of the

noise is to see how well the Mahalanobis distance distribution fits the χ2

distribution, as described in the Methods. Fig. 5A & B illustrate the empirical

cumulative distribution (5A) and density (5B) of Mahalanobis distances for

an actual noise sample. The expected values for these quantities have been

plotted as well, the close match between actual and expected entities suggest
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that the noise distribution is well approximated by a multivariate Gaussian

distribution.

Although the Mahalanobis distance test is quite sensitive, it is a necessary

but not sufficient test of the accuracy of our noise description. We thus per-

formed an additional test aimed at detecting deviations of the actual noise

from its representation based on its covariance matrix. We estimated the dis-

tribution of the third moment about the mean of noise sample (see Methods).

Fig. 5C shows that for 500 randomly chosen coordinate triplets the average

value of the third moment (sample size = 2000) has a Gaussian distribution

with 0 mean and an SD of 1√
2000

, as expected. Taken together these results

suggest that a noise description based on its covariance matrix is accurate

enough for our purpose.

Application to real data

The methods described can now be applied to the real data of Fig. 1. Once

the specific data generation model has been obtained (see Methods), it is

used to classify each of the 1493 events detected during 60 s of continuous

data acquisition. Of the 1493 events detected, 1361 were classified as pure

events (294 events from unit 1, 391 from unit 2, 139 from unit 3, 333 from unit

4 and 204 from unit 5), 89 were classified as superpositions of two different

units and 43 (i.e., less than 3%) were classified as outliers.

The pure events of three of the five units are displayed in Fig. 6B1-3

together with their mean and SD. The SD test seems to be met by the

events of units 3 (Fig. 6B1) and 4 (Fig. 6B2) but not by the events of unit 5,

which do not have a flat SD (Fig. 6B3). This is confirmed by the χ2 test (Fig.

6C). The χ2 distributions are expected to be on the left side on the noise

χ2 distribution (dotted line, Fig. 6C) for two reasons: they are computed by
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using the mean event of each unit as a template (i.e., 1 degree of freedom is

lost) and the sampling jitter cancellation results in a slight overfit (see Fig.

4D2). On this basis, the distributions of units 2 and 5 are suspect.

The projection test (Fig. 6D) confirms the poorer quality of units 2 and 5

but shows that all units can be unambiguously distinguished. The empirical

projection density estimates have been plotted on each graph (histograms)

together with the expected distributions (colored curves). The projections

are obtained by projecting all the pure events generated by one or the other

unit of the pair. The expectations are completely defined by the knowledge

of the distance between the two units of a pair and by the respective number

of pure events generated by each of the two units (e.g., in the top graph,

the distance between the two units is 8.55, the number of events from unit

1 is 294 and the number of events from unit 2 is 391; therefore, the integral

of the blue Gaussian is 294/(294+391)=0.43 and the integral of the green

Gaussian is 0.57). Based on those tests, spikes originating from unit 1, 3 and

4 would be kept for further analysis while spikes from unit 2 and 5 would be

discarded or at least taken with caution, for each of these two distributions

likely contains more than one unit.

26



Discussion

We have shown that a very simple model can “explain” electrophysiological

data collected by extracellular recordings in the locust AL. The combination

of an accurate noise model with an explicit model for data generation leads to

specific quantitative tests that the classified data should meet. These tests are

objective and can be graphically displayed, thus enabling the experimenter

or the reader to assess the quality or trustworthiness of the analyzed data. It

should be clear that the tests can be applied to the final results of any classi-

fication procedure6. These tests could therefore form a basis for comparison

between different spike sorting techniques. The less rigorous “cluster cutting”

methods, used in particular by commercial software, sometimes leave the user

or the reader with untestable confidence in the data. The adoption of objec-

tive measures such as those we propose here would, we believe, alleviate this

growing problem.

Our method does not take spike timing into account at any stage. That

is, no explicit refractory period is set, and no general form of the spike train

autocorrelation is required, as it is in many other methods (e.g. Fee et al,

1996b; Harris et al, 2000). In this way, spike timing information can be used

as another completely independent measure of quality. In our data we find

very reproducible inter-spike interval distributions, among neurons in a given

animal, as well as across animals (C. Pouzat, O. Mazor and G. Laurent, in

preparation), further confirming the accuracy of the procedure. Furthermore,

our tests routinely detect situations which would be missed by timing-based

test alone. For example, consider a cluster that contains only half of the spikes

generated by a single unit, either because that unit was split between two

6Two of the test require a knowledge (or at least an estimate) of the noise covariance
matrix Γ, but that can always be trivially obtained from the classified events.
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clusters or because a substantial percentage of its spikes were not detected.

While this cluster will still exhibit a “normal”-looking refractory period and

autocorrelation, it should still be detected by the tests we propose (by either

the projection test or the SD test, respectively).

The model we use here for the locust data is clearly the simplest possible

one. It is not expected to hold for all data sets, however, we expect it to work

successfully in a wide variety of experimental conditions. In rat neocortex,

for example, Fee et al find that for most of the units they recorded “[t]he

variability of spike residuals is nearly identical with that of background activ-

ity”(1996a, p.3831, see also Figs 1b,d,e and 2 in the same article), indicating

that the tests we propose should work in this system as well. Furthermore,

using the framework we describe, one can introduce more sophisticated mod-

els of data generation to analyze more complicated data sets. Once a new

model is specified, the statistical tests we introduced can be readily gener-

alized. Of particular interest are spikes with non stationary waveforms (e.g.,

within bursts). One way to model the waveforms of such neurons would be

to assign to each unit a cluster specific covariance matrix, to account for

the added variability in spike shape. These cluster specific matrices would

complement a global covariance matrix describing the noise. Although the

use of a covariance matrix to model spike waveform variability is only an

approximation, preliminary results using in vivo data collected from the rat

hippocampus (generously shared by K. Harris and G. Buzsaki) indicate that

the distribution of spike waveforms from a bursty cell is well described by

its second order statistics (i.e., by a covariance matrix). Another alternative

would be to develop a model of the dependence of the spike waveform on the

inter-spike interval (as suggested by Fee et al, 1996a) and use this model to

scale the template before computing the residual. Our tests would then be
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directly applicable.

Vertebrate data also often exhibit non stationary noise (e.g., Fee et al,

1996a). Such data would require a more precise description of the noise. For

instance, an extension of the current model could use a time dependent noise

covariance matrix. The noise whitening would then be applied by taking into

account each event’s time of occurrence.
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Figure 1, Pouzat et al.
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Figure 2, Pouzat et al.
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Figure 3, Pouzat et al.
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Figure 4, Pouzat et al.
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Figure 5, Pouzat et al.
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Figure 6, Pouzat et al.
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Figure legends

Figure 1

A. Top, scheme of the recording probe tips. Each shank carries two tetrodes.

The four tetrodes are identical. The surface of each recording site (filled and

open squares) is 177 µm2. The recording sites are placed at the corners of

a square with a 50 µm diagonal. The center to center distance between two

neighboring tetrodes is 150 µm. The shank width is 83 µm. Bottom, 1 s of

data bandpass filtered between 300 and 6000 Hz. Site 1 is the lowest site

of the tetrode; the other sites are numbered counter-clockwise. Calibration:

vertical, 100 µV; horizontal, 100 ms. Detected events are shown in red. The

traces are displayed inverted, that is, a positive deviation on the trace cor-

responds to a negative deviation with respect to the reference potential. B,

the 7 events shown on a smaller temporal scale (vertical, 100 µV; horizontal,

1 ms). A sweep, 3 ms long, has been built with the peak of each event at 1

ms. C left, average event computed from the 1493 events recorded over 60 s.

Vertical, 50 µV; horizontal, 0.5 ms; dotted line, 0 µV. C right, correspond-

ing standard deviation. Vertical, 25 µV; same time scale as C left. Dotted

line: SD level expected from the noise (15.4 µV on site 1, 15.1 µV on site 2,

14.6 µV on site 3 and 15.0 µV on site 4). Red dashed curves: average event

(same as C left) on the same site for comparison. D, construction of the noise

traces. After removal of 3 ms of data around each event, the remaining data

are concatenated. Vertical, 50 µV; horizontal, 100 ms. E, Noise correlation

functions computed from the noise traces. Upper diagonal matrix display:

auto-correlation functions on diagonal and cross-correlation functions other-

wise; 3 ms sweep. Vertical, 0.01 µV 2.

41



Figure 2

Illustration of the SD test on simulated data. A, waveforms of the two units

used to generate the data (see text). The scale bars are arbitrary. The vertical

bar has the value 1, equal to the noise’s SD. To compare with real data, the

length of the horizontal bar would be 0.5 ms; dashed line at zero. B left, 500

events generated from the two units (300 from u1 and 200 from u2) by adding

Normal white noise to the units waveforms. B right top, average event com-

puted from the 500 events of the sample. B right bottom, SD computed from

the sample. Dotted line, 1 (expectation from the noise properties). Vertical

scale bar, 0.1. Notice the non-zero SD at the peak and valley of the average

event. C and D, as in B, except that C and D have been built from the sub-

samples generated by unit u1 and u2, respectively. Note the reduction of SD

variations.

Figure 3

A, illustration of the χ2 test using the same computer generated sample as

in Fig. 2. i, one-unit model (top): the average event is first subtracted from

event #400, to yield the residual. The integral of the square of the residual

is the “χ2” value of event #400. Two-unit model (bottom): two units could

now have generated event #400; the waveforms of these units are given by

templates u1 and u2 (see text). The integrals of the square of the two residuals

(|∆400u1|2 and |∆400u2|2) are compared; the smallest indicates which one of

the two units most likely generated the event, with its associated χ2 value.

Aii: cumulative distributions of the χ2 values under the one- and two-unit

model assumptions and their expectation (dashed line). Grey line: one-unit

model (n=500); red line: unit u1, two-unit model (n=300); blue line: unit u2,
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two-unit model (n=200). B, Projection test. Bi: template u1 (red), u2 (blue)

and event #50 from the 500 computer generated samples. Bii: same objects

in the plane that contains all three points. The straight line joining the two

units has been drawn as well as the unit vector originating in u1, nu2u1 . The

vector joining u1 to event #50, ∆50u1 (representation of the residual in event

space) has been drawn as well. Biii: projection histogram of the 500 events

of the sample. The bin containing the projection of event #50 has been

filled. The red curve is probability density function (PDF) expected from the

projections of the 300 events generated by unit u1 (60% of the sample) while

the blue curve is the corresponding PDF expected from the projections of

the 200 events generated by unit u2 (40% of the sample).

Figure 4

A, origin of the sampling jitter illustrated with simulated data. A1, two events

are obtained by sampling an ideal waveform with two different origins. The

ideal waveform is 450-points long and the two samples are 45-points long.

The scale bars are arbitrary and are just labeled to help comparison with real

data. A2, the two sampled events are aligned on their peaks and have slightly

different time courses. A3, one hundred such events were generated from the

ideal waveform (see text). Black line, mean event; grey line, SD. The dashed

line is the zero SD level (no noise was added to this simulation). B, cancella-

tion of the sampling jitter illustrated on event 2. B1, event 2 (diamonds) is

exactly interpolated with a sinc function whose period is twice the sampling

period (black trace, the peak value is 1). Continuous grey line at zero. B2,

interpolated event 2 needs to be slightly shifted to overlap exactly with the

ideal waveform. The required shift is easily obtained by minimizing the χ2

(see methods). C, D and E, sampling jitter cancellation on real data. C1, 139

43



events originating from unit 3 (data in Fig. 1) on site 1, before sampling jitter

cancellation. Vertical bar, 100 µV. C2, mean event (top) and SD (bottom).

Dotted line, SD level expected from the noise properties (15.4 µV, see Fig.

1C and E). Vertical bar, 10 µV (applies only to the SD trace on C2 and

D2). The SD increase is slightly less pronounced than on the simulated case

(A3) because some background noise is present and the total SD (SDTotal,

which is the one displayed) is equal to (
√

SD2
Noise + SD2

Jitter). D1, the same

139 events after sampling jitter cancellation. D2, mean event (top) and SD

(bottom). The horizontal scale bar applies to the four graphs, C1, C2, D1

and D2. E, χ2 distributions before (thin line, 〈χ2〉 = 181) and after (thick

line, 〈χ2〉 = 168) sampling jitter cancellation (performed simultaneously on

the 4 recording sites). Dotted line, noise χ2 distribution (〈χ2〉 = 171).

Figure 5

A, black curve, empirical Mahalanobis distance distribution obtained from

a noise sample with 2000 events after noise whitening (see methods), the

expected χ2 distribution is shown in red. B, χ2 PDFs. Red, expected PDF;

black histogram, empirical probability density estimate from the same noise

sample as in A and after coordinate transformation. C, third moment distri-

bution of the whitened noise (see text).

Figure 6

Example of classification on real data from the locust antennal lobe. A, wave-

forms of each of the 5 units of the model on each of the 4 recording sites.

Vertical, 100 µV; horizontal, 0.5 ms. B, events from 3 of the 5 units. B1 left,

the 139 events generated by unit 3; B1 right, mean event and SD. Calibra-

tions: left, as in A; right, SD of site 1, 20 µV. Dotted lines on SD graphs:
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expected noise (see Fig. 1C). B2 and B3, same as B1, for unit 4 and 5. All

graphs in B have same scale. C, χ2 test. Cumulative distributions of the pure

events from the 5 units and from all the 1450 classified events (pure events

from each of the 5 units and 89 events classified as superpositions). Dashed

line, empirical noise χ2 distribution. D, Projection test. For each of the 10

possible pairs of units, the empirical projection of the events belonging to one

or the other unit of the pair is shown (histograms). The expected probability

densities are shown superposed on each graph (see text). Vertical bar, 0.1.

Horizontal bar, 1. Note the absence of overlap between the projections of any

two units, as well as the systematic discrepancy between the empirical and

expected densities for units 2 and 5.
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