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Abstract

Multi-electrode arrays (MEA) allow experimentalists to record extracellularly from
many neurons simultaneously for long durations. They therefore often require that the
data analyst spends a considerable amount of time first sorting the spikes, then doing
again and again the same basic analysis on the different spike trains isolated from
the raw data. This spike train analysis also often generates a considerable amount of
figures, mainly diagnostic plots, that need to be stored (and/or printed) and organized
for efficient subsequent use. The analysis of our data recorded from the first olfactory
relay of an insect, the cockroach Periplaneta americana, has led us to settle on such
“routine” spike train analysis procedures: one applied to spontaneous activity record-
ings, the other used with recordings where an olfactory stimulation was repetitively
applied. We have developed a group of functions implementing a mixture of common
and original procedures and producing graphical or numerical outputs. These func-
tions can be run in batch mode and do moreover produce an organized report of their
results in an HTML file. A R package: STAR (Spike Train Analysis with R) makes
these functions readily available to the neurophysiologists community. Like R, STAR
is open source and free. We believe that our basic analysis procedures are of general
interest but they can also be very easily modified to suit user specific needs.
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1 Introduction

Multi-electrode arrays (MEA) allow experimentalists to record extracellularly from many
neurons simultaneously for long durations. They therefore often require that the data
analyst spends a considerable amount of time first sorting the spikes, then doing again
and again the same basic analysis on the different spike trains isolated from the raw data.
Although this “basic” analysis is likely to change from person to person, it will usually
include, for “spontaneous activity data”, a list like:

� A display of the spike train per se in a raster plot or a counting process plot [Cox
and Lewis, 1966, Turnbull et al., 2005].

� A plot or a numeric quantity testing the stationarity of the train.

� Perhaps some standard distributions are fitted to the inter spike intervals (isi) and
a plot checking the quality of the fits is produced.

� If several neurons are recorded simultaneously then cross-correlation histograms [Perkel
et al., 1967b, Brillinger et al., 1976] are likely to be generated.

Then depending on the results of this systematic and preliminary analysis the data
analyst will decide to go further or to stop. In this scenario two issues arise:

� A lot of time ends up being spent doing fundamentally the same thing on different
data. That is a strong incentive for automatization/batch processing.

� A lot of analysis results in the form of numerical summaries and graphics are being
generated calling for a way to organize and display them in a systematic manner.

We insist here on the notion of preliminary analysis as opposed to the “refined” one which
ends up being presented and illustrated in publications. There is still a long way between
the preliminary and final analysis requiring a major input from the data analyst. The idea
is to save time and stay alert for the really important part of the analysis.

In any case, even if the data analysis software used includes routines or functions to
implement the individual components of our first list, making the analysis automatic, i.e.,
suitable for processing in batch mode, can be problematic. Difficulties arise from two
sources:

� Getting good initial guesses for the optimization routines “doing the fits” can be
tedious.

� Setting some “smoothing parameters”, like a bin width, for plots is easily done by a
human trying out several values and looking at the result but is a hard task for a
“blind” computer.

We solved these two problems by:

� Using model reparametrization in the fitting routines [Bates and Watts, 1988] making
the optimization step more robust with respect to “bad” specifications of initial
guesses.

� Using “statistical smoothing” techniques based on smoothing spline [Wahba, 1990,
Gu, 2002, 2008] for the plots.

Once these two problems have received a satisfying answers the question of a suitable
software environment into which these solutions will be implemented has to be answered.
We chose R1 [R Development Core Team, 2008] because, among many other reasons:

1http://www.r-project.org
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� It is open source and free.

� It runs on any computer likely to be found in a physiology laboratory, PC running
Linux, Windows or Mac.

� It is a powerful and elegant programming language based on Scheme [Ihaka and
Gentleman, 1996, Abelson et al., 1996].

� It uses state of the art numerical libraries (for optimization, random number gener-
ation, clustering, etc).

� It can be used in batch mode.

� It is, in our experience at least, incomparable for graphics2.

� It is specifically designed to implement a clear and thorough type of data analy-
sis [Chambers, 1999].

� It is very easily extended by its users and, so to speak, encourages its users to become
its programmers [Chambers, 2000, 2008].

Adopting R did moreover provide a pretty straightforward solution to our “analysis
results organization and display” problem. Modern computers are all equipped with a
web browser and everyone knows how to use such software. HTML files, the type of files
that a web browser displays, can, as everyone knows, contain text, figures, mathematical
equations and more. It seems therefore reasonable to use the HTML format to organize
our analysis results. If one agrees on that, the only problem left is the generation of this
analysis specific HTML file. Well, the good news here is that the problem is solved by one
of the R user contributed add-on packages: R2HTML3 [Lecoutre, 2003], which turns out
to be very simple to use.

Equipped with these tools: R, statistical smoothing plus model reparametrization and
R2HTML, we have developed a new R add-on package: STAR4 (Spike Train Analysis with
R) which like R itself is open source and free. The package contains 125 functions, most of
which are seldom directly used. It has now reached a satisfying maturity when applied to
our data recorded from the antennal lobe (first olfactory relay) of the cockroach Periplaneta
americana. We think that STAR could be useful to others and would like to know in any
case how it works on different types of data. Because STAR is open source and because
R makes it very easy for users to develop their own functions, we are confident that it
could be adapted in a short time to other preparations.

2 Methods

2.1 Animal preparation, recordings and data sets

2.1.1 Animal preparation

Adult male cockroaches, Periplaneta americana were used as experimental animals. They
were reared in an incubator with free access to food and water, at 25 ◦C. They were cold-
anesthetized prior to the experiment. Wings, legs and some mouth parts were removed.
Each insect was restrained in an acrylic glass holder, with its head fixed with dental
wax [see Escola et al., 2008, Fig. 2]. The lower part of both Antennae was protected with

2See for instance: http://www.stat.auckland.ac.nz/~ihaka/787/ and http://addictedtor.free.

fr/graphiques/index.php
3http://www.stat.ucl.ac.be/ISpersonnel/lecoutre/R2HTML/
4http://sites.google.com/site/spiketrainanalysiswithr/
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plastic tubes (to avoid contact with the physiological solution). A window of head cuticle
was opened, the tracheae on the anterior face of the brain and the sheath surrounding the
antennal lobes were removed. The esophagus was cut to reduce brain movement. Fresh
cockroach saline was superfused on the brain. The saline composition was: NaCl 130 mM,
KCl 12 mM, CaCl2 6 mM, MgCl2 3 mM, glucose 23 mM, HEPES 4mM; PH 7,2; 360
mosmol/kg.

2.1.2 In vivo recordings

MEA recordings were made in the antennal lobe using 16 sites silicon electrodes (Neu-
ronexus Technologies). The probe was gently inserted into the antennal lobe until activity
appeared at least on 4 recording sites. Signals were sampled at 12.8 kHz, band-pass filtered
between 0.3 and 5 kHz and amplified using an IDAC2000 amplifier and its Autospike 2000
acquisition program (SYNTECH5).

2.1.3 Olfactory stimulations

A main moistened and filtered airflow was placed 3 cm away from the antenna, and a
secondary stream controlled by a solenoid valve was used to deliver odor puffs. A piece
of filter paper was soaked in different aromatic compounds and placed in the secondary
stream. 0.5 s odor puffs were used.

2.1.4 Data sets

The examples used in this paper come from 4 experiments referred to as: e060517,
e060817, e060824 and e070528 (the names are built with 2 digits for the year, 2 for
the month and 2 for the day). The number of neurons reliably isolated in each of these
experiments were respectively: 3, 3, 2 and 4. The spike trains used in this paper, either
from spontaneous activity or from repeated odor stimulations are all distributed with our
package STAR. For each of these experiments the spontaneous activity of each neuron
recorded for ∼ 1 mn (58 to 61 s) is used. These specific data are referred to as eNUMBER-
spont_NEURON in Sec. 3.1 and Table 1. One odor application with ionon (19 repetitions, 15
s acquired per presentation) is used for e060517 and the corresponding data set is referred
to as: e060517ionon. Three odor applications with citronellal, terpineol and a 50 / 50
mixture of the two (20 repetitions, 15 s acquired per presentation) are used for e060817
and the corresponding data sets are refered to as: e060817citron, e060817terpi and
e060817mix. One odor application with citral (20 repetitions, 15 s acquired per presenta-
tion) is used for e060824 and the corresponding data set is referred to as: e060824citral.
One odor application with citronellal (15 repetitions, 13 s acquired per presentation) is
used for e070528 and the corresponding data set is referred to as: e070528citronellal.
A more comprehensive description of these data sets can be found in the help files of STAR.

2.2 Data analysis

All the data analysis described in this paper was carried out using R [R Development Core
Team, 2008], some of its user add-on packages and two additional packages developed by
us, SpikeOMatic6 and STAR. “R is a free software environment for statistical computing
and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and

5http://www.syntech.nl.
6http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/newSOM/newSOMtutorial/

newSOMtutorial.html.
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MacOS.”7 The main subject of this paper is a description of some of the features of STAR.
Sec. A.1 describes briefly how to obtain and install R and STAR.

2.3 Getting the spike trains: spike sorting

Spike sorting was carried out as described in: “The New SpikeOMatic Tutorial” [Pouzat,
2006].

2.4 Spontaneous activity analysis

We start with the analysis of “spontaneous regime” data. By that we mean data recorded
in the absence of stimulation (typically epochs of 60 s).

2.4.1 Spike train plot

The most common way to display a spike train is probably the raster plot , which is
fundamentally a one dimensional graph where the occurrence time of the spike gives the
horizontal coordinate and where a symbol like a little vertical bar, or a star (“*”) is used
to represent each spike. As abundantly illustrated by Turnbull et al. [2005] and, in fact,
proposed much earlier in the first figure of the book of Cox and Lewis [1966], it is much
more informative to plot the cumulative number of events as a function of their occurrence
time as shown on Fig. 1, where a classical raster plot is also added at the bottom of the
graph. With this representation we can see the discharge dynamics much more clearly.
When the firing rate increases it becomes difficult (if not impossible) to see the individual
spike symbols on the raster and the capacity to distinguish between a moderate and a large
increase in firing rate is strongly compromised. For instance on the raster of Fig. 1 the
burst of spikes coming just after second 30 is barely distinguishable from the one coming
at the end of the recording epoch, while on the cumulative plot we clearly see that the
slope is much smaller for the second than for the first burst implying that the firing rate
is smaller in the second than in the first burst. The increments of the cumulative plots
during a burst give us, by definition, the number of spikes in the burst. The long burst
coming after the 20th second is for instance made of roughly 100 spikes. We also see
on the figure that their are no regular pattern of increase during a burst, implying that
the successive bursts are made of a variable number of spikes. Clearly, we can say a lot
more about a spike train by looking at a cumulative plot rather than at a raster plot. In
addition important non-stationarities of the discharge will show up as a curvature of the
graph, which will be concave for a decelerating discharge and convex for an accelerating
one.

Following the statistical literature terminology [Brillinger, 1988, Johnson, 1996] we
refer to the kind of plot shown on Fig. 1 as a counting process plot . A Counting process is
a right continuous step function which undergoes a unit jump every time an event occurs.
More formally [Brillinger, 1988, Eq. 2.1]: For points {tj} randomly scattered along a line,
the counting process N(t) gives the number of points observed in the interval (0, t].

N(t) = ]{tj with 0 < tj ≤ t} (1)

where ] stands for the cardinality (number of elements) of a set and where the {tj} stand
the the occurrence times of the spikes.

7Quotation from the home page of the “The R Project for Statistical Computing”: http://www.

r-project.org/
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Figure 1: A spike train plot of neuron 4, data set, e070528, spontaneous regime. The
generation of this figure with STAR is explained in Sec. A.8.
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2.4.2 Poisson process

In the simplest case neuronal discharges are be well approximated by a homogenous Pois-
son process, which is formally defined as a stochastic process fully characterized by a time
independent rate parameter, ν, such that the number of events observed in (t, t+τ ] follows
a Poisson distribution with parameter ντ (for all t > 0). Using our previous Counting
process definition (Eq. 1) we would write:

Prob{N(t+ τ)−N(t) = n} =
(ντ)n

n!
exp(−ντ) (2)

The additional requirement of independence of the observed counts, n1 and n2, on two
non-overlapping time intervals: (t1, t1 + τ1] and (t2, t2 + τ2], defines a homogenous Poisson
process.

The homogenous Poisson process is not very useful to analyze “directly” real spike
trains, at least not ours, but its extension to time dependent discharges (with the inho-
mogenous Poisson process) is extremely useful to describe trial-averaged responses of a
single neuron to repeated presentations of a given stimulus.

2.4.3 Renewal test plot

When a homogenous Poisson process is not good enough for the data, the next type of
models to try is the homogenous renewal process. A homogeneous renewal process is a
process where the intervals between successive events, the inter spike intervals (isi), come
all independently from the same distribution (they are said to be independent and iden-
tically distributed or iid). In other words it is enough to characterize the isi distribution
(together with the distribution of the first event) to fully characterize the whole process.

The definition of a homogenous renewal process leads us quickly to a graphical test
that such processes should pass. Let as before, {tj}Kj=1, be our K spike times from which
we get K− 1 isis: {isij = tj+1− tj}K−1

j=1 . We can sort these isis in increasing order to get:
{i(j)}, where i(j) ≤ i(l) if j < l. Let Oj be the rank of interval ij of the original (unsorted
sequence) in the new sorted one. To use a concrete example, let us assume that we have
the following original sequence of 5 isis (expressed in s):

1 2 3 4 5
0.031 0.062 0.073 0.092 0.054

Then the {Oj} sequence is:

1 2 3 4 5
1 3 4 5 2

and the corresponding sorted sequence, {i(j)}, is:

1 5 2 3 4
0.031 0.054 0.062 0.073 0.092

Now if the {ij} are iid then the {Oj} should be very nearly so (in the sense that the
joint distribution of (Oj , Oj+k) should be uniform on {1, . . . ,K−1}×{1, . . . , Oj −1, Oj +
1, . . . ,K−1} for k 6= 0). Then if we plot Oj+1 as a function of Oj we should see the square
{1, . . . ,K − 1} × {1, . . . ,K − 1} uniformly filled, without a pattern.

By plotting Oj+1 as a function of Oj instead of ij+1 as a function of ij we are making
a better use of the surface of the plot and that is not an aesthetic issue but a way to
make the plot more informative as shown on Fig. 13. We can then subdivide the surface
defined by the {1, . . . ,K − 1} × {1, . . . ,K − 1} square into sub-squares and apply a χ2

8



test to the contingency table so defined. This is what we systematically do with our data.
We generate two plots: Oj+1 vsOj and Oj+2 vsOj . We subdivide the surface of the plots
into squares of identical surface. The surface is chosen per default8 so that under the null
hypothesis of independence, at least 25 events would fall into into each square (this is to
insure the applicability of the χ2 test). We do this χ2 statistics computation not only at
lag 1 and 2 but also up to lag: 10 log10(K− 1)9 (this maximal lag can be set by the user).
We then also plot this χ2 statistics as a function of the lag and show the 95% confidence
region of the χ2 in the background.

We also plot the isi empirical autocorrelation function, what Perkel et al. [1967a] call
the serial correlation coefficients function10, and test it against the null hypothesis of no
correlation.

Fig. 2 shows what we call a “renewal test plot” from which it is rather clear that
the homogenous renewal process model does not apply. These renewal test plots are, in
our experience, also very sensitive to non-stationarities which makes sense given that a
homogenous renewal process must be stationary by definition. The reader is invited to
explore this with one of the demonstrations of STAR. Sec. A.10 describes how to do that.

2.4.4 Bivariate duration distributions fits

In addition to the renewal test plot we have included in our automatic spike train analysis
procedures a systematic fit of the empirical isi distribution with 6 common bivariate
duration distributions [Lindsey, 2004] whose probability density functions (pdf s) are:

� log normal:

dlnorm(i;µ, σ2) =
1√
i2πσ2

exp
(
− 1

2
(log i− µ)2

σ2

)
(3)

� inverse Gaussian:

dinvgauss(i;µ, σ2) =
1√

2πσ2i3
exp

(
− 1

2
(i− µ)2

iσ2µ2

)
(4)

� gamma:

dgamma(i;α, β) =
iα−1

βαΓ(α)
exp(− i

α
) (5)

� Weibull:
dweibull(i;α, β) =

α

β
(
i

β
)α−1 exp(−(

i

β
)α) (6)

� refractory exponential:

drexp(i;α, imin) =
{

0 if i < imin
α exp(−α (i− imin)) if i ≥ imin

(7)

� log logistic:

dllogis(i;µ, σ) =
1
iσ

exp(− log i−µ
σ )(

1 + exp(− log i−µ
σ )

)2 (8)

8See the documentation of the renewalTestPlot function of STAR
9log10 stands for the decimal logarithm, i.e., log10(10) = 1.

10Defined in their Eq. 7 and 8, p 400
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Figure 2: A “renewalTestPlot” of neuron 4, data set, e070528, spontaneous regime. The
generation of this figure with STAR is explained in Sec. A.10.
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The names we have used for these pdf s like, dlnorm, are the names under which these
functions can be called in R. Parameters estimates for these distributions are obtained by
the maximum likelihood method [Kalbfleisch, 1985]. The ones of the lognormal, inverse
Gaussian and refractory exponential distributions are available in closed form [Lindsey,
2004]. The ones of the gamma, Weibull and log logistic distributions are obtained by
numerical optimization using function optim for the Weibull and the log logistic distribu-
tions and using the profile likelihood method for the gamma distribution [Monahan, 2001,
pp 210-216]. Initial guesses are obtained by the method of moments [Casella and Berger,
2002]. In addition reparametrization is used systematically for parameters which are con-
strained to be positive [Bates and Watts, 1988, Monahan, 2001], like the two parameters
of the gamma distribution. For those the log likelihood function is written in term of the
log parameters. See the examples of gammaMLE, weibullMLE and llogisMLE for details.

Once some or all of these distributions have been automatically fitted the capacities of
the models to fit the data are compared with the Akaike’s Information Criterion11 [Burn-
ham and Anderson, 2002, Lindsey, 2004]. The Akaike’s Information Criterion selects
the best model among a set of models but does not provide any clue regarding how well
the best model fits the data. A way to do that is to build a theoretical quantile quantile
plots (Q-Q plots) [Chambers et al., 1983, Chap. 6] as shown on Fig. A.12. On these
plots, a perfect fit would fall on the diagonal which is drawn in red. 95 and 99% pointwise
confidence intervals are also drawn12.

In order to get insight into the two plots (Fig. 2 and Fig. 3) we have just presented,
the reader can first consider what would these plots look like with a genuine homogeneous
Poisson process. Clearly such a process is renewal, therefore it should give results within
the confidence regions of the two graphs at the bottom of Fig. 2. Since the interspike
intervals of a homogeneous Poisson process have an exponential distribution, our refractory
exponential distribution model (Eq. 7) should provide a good fit with a very small (nearly
null) value of the parameter imin. The “Q-Q plot test” at the bottom right of Fig. 3 should
therefore also be passed. Next the reader can see that passing one of the Q-Q plot tests
of Fig. 3 is not enough to establish that a train is renewal as follows: Take one of the six
distributions, say the log normal (Eq. 3) one, and choose values for its two parameters.
Draw independently 500 interspike intervals from this distribution. Sort the intervals from
the smallest to the largest. Built a train by summing all the intervals. The result will
pass the log normal Q-Q plot test “by construction”, but it will fail to pass the renewal
tests of Fig. 2 since the resulting train will have a strong built-in trend. This toy example
illustrate the need to use test implying an ordering of the data (like the Q-Q plot test) with
caution when the data have been serially sampled. Such tests can never prove or disprove
an “independently distributed” hypothesis, that is, the renewal process hypothesis in the
spike train context.

2.4.5 Cross correlation histograms

The cross-correlation histograms functionalities we have included in STAR are very close
to what is described under this name in Brillinger et al. [1976]. The main difference is
that we don’t use the square root transformation to stabilize the variance since there is
no variance to stabilize under the null hypothesis of no correlation.

In addition STAR provides a smooth cross-correlation histogram which is build exactly
11Strictly speaking, the Akaike’s Information Criterion being designed to compare models with different

number of parameters is not required here, a direct likelihood comparison would lead to the same result.
We have included it in STAR since distributions with more than 2 parameters will be implemented in a
near future.

12To be honest we have to say that Fig. 3 is one of our rare examples where one of 6 duration distribution
(the inverse Gaussian) is able to fit our data.
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Figure 3: theoretical quantile quantile plots of the six fitted duration distribution to the
isis of neuron 1, data set, e070528, spontaneous regime. The generation of this figure with
STAR is explained in Sec. A.12.
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in the same way as the smooth peri stimulus time histograms of Sec. 2.5.2, where they are
described in detail. Fig. 7 shows a screen shot of an automatically generated report where
both types of cross-correlation histograms applied to the same data can be seen.

2.5 Stimulus response analysis

We next consider the analysis of repeated stimulations like, in our case, 15 to 20 successive
applications of an odor puff to the antenna for 0.5 s every minute. We assume here that
the data from a single neuron have been formatted such that they are all locked with
respect to the stimulus onset. Considering that the actual number of spikes generated by
a neuron during a fixed acquisition epoch using always the same stimulus will fluctuate,
a matrix is not the proper format to store the spike trains of a neuron. The list object of
R is, on the other hand, particularly well adapted for this task (see Sec. A.6 for details
about R list objects).

2.5.1 Raster plot

Although counting process plots can be generalized to display successive responses of a
neuron to repeated stimulations we found the more conventional raster plot better suited
for this task. This is therefore the default method we use to display“raw”stimulus response
data. In our automatic spike train analysis and report generation procedure we moreover
add to it a smooth version of the classical peri stimulus time histogram [Gerstein and
Kiang, 1960]. We discuss next these smooth peri stimulus time histograms.

2.5.2 Smooth PSTH

The case for using smooth as opposed to“classical”peri stimulus time histograms (psth) has
been clearly and convincingly made by Kass et al. [2003] and won’t be repeated here. We
are instead going to illustrate the principle while underlying the difference in methodology.
A smooth peri stimulus time histogram (spsth) is not only statistically more“efficient” than
a peri stimulus time histogram but it also facilitates the development of an automatic spike
train analysis software being not (or at least much less) sensitive to a bin width choice.

The psth (like the spsth) can be given a firm statistical basis as soon as one considers
that the relevant feature of a single neuron response to a given stimulus is its “average” or
“mean” response, that is, it’s average instantaneous firing rate. For then if the successive
responses of the neuron are uncorrelated and are “collapsed” or aggregated13, the resulting
process tends to an inhomogenous Poisson process [Ventura et al., 2002, Sec. 4, p 6]. A
inhomogenous Poisson process is like a homogenous Poisson process (Sec. 2.4.2) for which
the rate ν is allowed to be time dependent. That is, Eq. 2 has to be modified as follows:

Prob{N(t+ τ)−N(t) = n} =

( ∫ t+τ
t ν(u) du

)n
n!

exp
(
−
∫ t+τ

t
ν(u) du

)
(9)

where we see that if ν(u) = Cst, Eq. 2 is obtained. The traditional psth produces a ν
estimate that is a step function (ν is supposed to be constant over the time period spanned
by a bin). The spsth produces a smooth estimate of ν. In order to produce any of the
two estimates, the “raw” data (the 15 to 20 spike trains of the considered neuron for a
given stimulus) have to be pre-processed by binning. Then for a psth, the bin counts
are divided by the number of trials and by the bin length to obtain the final estimate.
Approximate confidence intervals are also available using the Poisson assumption. Ignoring
the statistical efficiency issue, the crucial parameter is the bin width (or more generally the
sequence of bin widths). If the width is set too large, sudden changes of ν will be missed

13That is, if the trial of origin of the spikes is lost (or ignored), as happens upon building a psth.
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(filtered out) and the estimate will be biased, if set too small statistical fluctuations (due
to the finite sample size) might be confounded with genuine changes of ν and the estimate
will exhibit a large variance. The traditional solution to this problem is interactive: try
out several bin widths and see the results. Having confidence intervals clearly helps in
making “objective” choices with such an approach. Fig. 16 illustrates this point14.

The smooth peri stimulus time histogram (spsth)of the present paper produces an
estimate, ν̂(t), of ν(t) through a compromise between two antagonistic goals: goodness of
fit and smoothness. Alternative methods based on kernels or polynoms [see Eubank, 1999,
for a book length treatment of the special case of Gaussian regression] as well as Bayesian
methods where the “complexity” (i.e., number of parameters) of the model is considered
unknown but finite [Kass et al., 2003, Wallstrom et al., 2007] are also available to built
spsths. If {xi}Ni=1 is the set of bin centers used in the preprocessing stage, δ, the bin width,
M , the number of stimulus presentations and if {yi}Ni=1 is the set of corresponding spike
counts, the log likelihood of ν̂ is:

L({ν̂(xi)}Ni=1) =
N∑
i=1

(
yi log

(
ν̂(xi) δM

)
− ν̂(xi) δM

)
(10)

Remember that the likelihood is proportional to the probability of the data. We are
assuming here that the bin width, δ, is small enough to approximate the integral appearing
in Eq. 9 with: ∫ xi+

δ
2

xi− δ
2

ν(u) du ≈ ν(xi) δ ∀ i ∈ {1, . . . , N}.

This log likelihood function (Eq. 10) is maximized by a step function whose step height
in each bin is given by ν̂(xi) = yi

δM . That is what the classical psth does. But we
want here a smooth estimate of ν. This is justified physiologically when the averaged
response is estimated from neurons getting their input after a rather long sequence of
events: odor molecule adsorption on the antenna’s cuticle, transduction involving second
messengers in the olfactory receptor neurons, spike propagation along the antenna’s length,
synaptic transmission from the receptors to the recorded antennal lobe neurons, feedback
activity generated within the antennal lobe [Kaissling, 1987]. Each one of these stages
would smear out in time its input even if the latter was a perfect step function. The
smoothness hypothesis is therefore not a mere mathematically convenient requirement
but a physiologically grounded assumption. We would moreover expect it to hold in a
wide range of neurophysiological studies and definitely in any setting involving neurones
recorded after the receptors stage. But arguing that smoothness makes sense does not give
us directly a way of enforcing it as a constraint in our mathematical formulation. There
is moreover another obvious constraint that ν, being an instantaneous firing rate, must
satisfy: it must be non-negative. This latter constraint is dealt with as we did previously
for the non-negative parameters of our duration distributions (Sec. 2.4.4): the log of ν is
estimated directly. To make subsequent equations shorter we will write:

η() = log
(
ν() δM

)
(11)

Our previous log likelihood equation, Eq. 10 becomes:

L({η̂(xi)}Ni=1) =
N∑
i=1

(
yi η̂(xi)− exp

(
η̂(xi)

))
(12)

14But the reader should keep in mind that if the bin width is chosen after seeing the data, the interpre-
tation of the pointwise 95% confidence interval as: “The true mean value of ν() over the bin should fall in
the confidence interval 95 out of a 100 experimental replication”, is not valid anymore.
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In order to benefit from the powerful smoothing spline results [Wahba, 1990, Gu, 2002]
we are going to enforce our smoothness constraint by forcing the integral of the squared
second derivative of η̂ to be finite, that is:∫ (d2η̂(x)

dx2

)2
dx < ∞, (13)

where the integral is evaluated on a domain containing all the xis. We could here also
use first order derivatives as well as third or higher order. The key requirement is to take
the integral of the square of the chosen derivative. Choosing higher order derivatives leads
to longer and more “memory hungry” computations as well as to estimates for which, by
definition, derivatives at higher order do exist. Notice that the penalization is uniform on
the definition domain of x. This is a potential weakness of the approach since for instance
the spsth would ideally be flat prior to the stimulus onset which would lead one to want to
constrain the pre-stimulus period to be smoother than the subsequent one. We combine
our “goodness of fit requirement” (Eq. 12) with our “smoothness” requirement (Eq. 13) by
finding the smooth function η̂ minimizing the penalized likelihood :

−
N∑
i=1

(
yi η̂(xi)− exp

(
η̂(xi)

))
+ λ

∫ (d2η̂(x)
dx2

)2
dx, (14)

where the smoothing parameter, λ, is non negative. The first term here is the opposite of
our log likelihood defined by Eq. 12. Minimizing this term amounts to maximizing the log
likelihood and therefore to have a “good” fit. The second term is positive or null. It is null
regardless of the value of λ when ν̂ is a linear function (whose graph is a straight line).
As shown on Fig. 4 the chosen value of λ will have a crucial influence on the estimated
function. A small value will lead to a function matching arbitrarily precisely the data
while a large value will lead to a linear function, as illustrated, for the Gaussian regression
case, in Wahba [1990, Fig. 4.1-4.3, pp 46-47] and Gu [2002, Fig. 1.1, p 3].

Three key results As mentioned before the smoothing spline theory is, thanks to the
work of Grace Wahba and her collaborators [Wahba, 1990, Gu, 2002], extremely well de-
veloped. This is the availability of a strong theoretical results together with the availability
of software which lead us to use this methodology. We will state here three results which
are particularly important.

Solution of the penalized likelihood problem It can be shown [Kimeldorf and
Wahba, 1971, Wahba, 1990, Gu, 2002] that the function η̂λ minimizing Eq. 14 for a fixed
λ exists in a finite dimensional space whose basis functions can be found. That is, η̂λ can
be written as:

η̂λ(x) =
1∑
j=0

dj φj(x) +
N∑
i=1

ciR(xi, x) , (15)

where, assuming that a smoothness constraint on the second order derivative is used
(Eq. 13) and that the xis have been rescaled such that their definition domain is [0, 1]:

φ0(x) = 1 φ1(x) = x− 0.5

and

R(xi, x) = [(x− 1
2

)2− 1
12

] [(xi−
1
2

)2− 1
12

]/4− [(| xi−x | −
1
2

)4− 1
2

(| xi−x | −
1
2

)2+
7

240
]/24

The coefficients, d0, d1 and {ci}Ni=1 have to be found but classical methods for generalized
linear models with penalization, penalized iteratively re-weighted least squares (PIRLS),
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Figure 4: Influence of smoothing parameter choice. Comparison of fitted smooth peri
stimulus time histograms using 3 different values for the smoothing parameter λ. An
optimal value, λ0 was obtained by the cross-validation method described in the sequel.
Two additional were performed with λ0

1000 (A) and with 1000λ0 (C). On A, B and C, the
“raw data” (classical psth built with a bin width of 25 ms) appears as black and the fitted
curve appears as red. D, the 3 fits superposed. A small λ leads clearly to a “wiggly” fit
following the data closely, while a large one generates a fit following only the very slow
variations of the discharge.
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can be directly used for that [Gu, 2002, Chap. 3 and 5] as detailed in Sec. B of the
Appendix. The user of these methods should moreover be aware that at least 2 symmetric
matrices whose approximate size are N2 have to be allocated during the calculations. This
is a strong incentive to keep our preprocessing bin size δ (Eq. 10) as “large” as possible.
If we have an acquisition duration of 15 s for each stimulus presentation and if we use a δ
of 25 ms we are going to need 2 · (40 · 15)2 ≈ 2.9 MB of RAM. If we use instead a δ of 1
ms we are going to need 252 more, that is, roughly 1.8 GB. The first memory requirement
is negligible for a modern PC, the second is likely to induce a ”catastrophic” computation
slowdown due to swap space filling if a “tiny” laptop is used.

Smoothing parameter selection by “performance-oriented iteration” The
practical use of the smoothing spline methodology requires the availability of an efficient
method for setting the smoothing parameter, λ (Fig. 4). Assuming that the data where
generated by η, we define the “optimal” λ0 as the one which minimizes:

1
N

N∑
i=1

(
exp

(
η(xi)

)
− exp

(
ηλ(xi)

))
·
(
η(xi)− ηλ(xi)

)
which is the average symmetrize Kullback-Leibler distance over the sample points [Gu,
2002, p 152]. Notice that we do not assume here that the “true” η function satisfies Eq. 13,
it could for instance be discontinuous. The PIRLS algorithm used to estimate η̂λ at fixed
λ can be combined with the cross-validation approaches used to choose λ in penalized
weighted least squares (PWLS). Each iteration of the PIRLS algorithm is a Newton it-
eration where a new η

(k+1)
λ is found as the minimizer of the quadratic approximation of

the negative (penalized) log likelihood surface at the present η(k)
λ estimate. But the struc-

ture of the quadratic approximation is the same as the one of a PWLS. The idea of the
performance-oriented iteration is then to solve a succession of PWLS problems by up-
dating simultaneously the coefficients d0, d1, {ci}Ni=1 and the smoothing parameter. The
cross-validation scheme used to estimate λ can be shown to give on average the optimal λ0

in the PWLS setting [Craven and Wahba, 1979, Wahba, 1990, Gu, 2002]. In the present
setting, strong arguments together with simulations suggests that the same holds but no
formal proof is available [Gu, 1992]. Monte-Carlo simulations presented in Sec. 3.2.3,
Fig. 10 A, demonstrate that the performance-oriented iteration is performing very well
in the present setting.

For completeness we mention here that theoretically better cross-validation schemes
have been designed for the present setting [Xiang and Wahba, 1996, Gu and Xiang, 2001].
These schemes do moreover outperform the present performance-oriented iteration scheme
in multidimensional problems. They can moreover be used in our software by calling
function gsspsth instead of gsspsth0. On our data we have nevertheless found that they
do not improve the estimation of λ while they require more computation time.

Confidence intervals One of the most surprising results of the smoothing spline the-
ory is that “confidence intervals” can be obtained [Wahba, 1983, Nychka, 1988, Wahba,
1990, Gu, 2002]. That is, a confidence band can be constructed around η̂λ such that 95%
of the {η(xi)}Ni=1 (where η is again the truth) are contained in it on average. The aver-
age coverage probability is exact in the Gaussian regression case and approximate in the
present Poisson regression case. Monte-Carlo simulations presented in the Results section
demonstrate that they are accurate on average in the present setting. The pointwise cov-
erage probability is nevertheless not uniform. A well known shortcoming for smoothing
spline applied to Gaussian regression [Wahba, 1983, Nychka, 1988, Eubank, 1999, Cum-
mins et al., 2001]. Using Monte Carlo simulations we show that the same goes in the
present setting.
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Numerical implementation All the numerical routines required to implement the
smoothing spline methodology of this paper (and much more) are readily available in
Chong Gu’s user contributed R package: gss (for general smoothing spline) [Gu, 2002,
2008]. The STAR function, gsspsth0, used to generate the smooth peri stimulus time
histograms of this manuscript does a very simple job indeed:

1. Preprocessing: Given a bin size, δ, whose default is 25 ms, build an unnormalized
classical psth , that is, create a vector, Time, containing the centers of the bins and
a vector, Count, containing the total number of spikes (from all the trials) in each
bin.

2. Call gss function gssanova0 with Count as the dependent variable and Time as the
independent one, specifying that the Poisson family has to be used.

3. Use gss function/method predict.gssanova0 (see Sec. A.7 of the Appendix) on the
output of gssanov0 to get the estimate η̂λ and its associated standard error: sebηλ .

4. Postprocessing: Get the estimated instantaneous frequency:

ν̂λ =
ebηλ
δM

and the upper / lower limit of the 95 % confidence band:

ebηλ±1.96 sebηλ
δM

2.5.3 Empirical check of the spsth smoothing parameter and confidence in-
tervals by Monte-Carlo simulations

In order to check the validity of the smoothing parameter selection and of the confi-
dence intervals (or confidence bands) of our spsths we used four data sets which are dis-
tributed with our package STAR (Sec. 2.1.4). For each neuron / data set combination (e.g.,
e070528citronellal_1) the following parametric bootstrap scheme [Efron and Tibshirani,
1993, pp 53-56] was carried out:

1. Get a spsth, ν̂λ, using a bin width of 25 ms which is the default value for this
parameter in STAR (Fig. 5 A to B).

2. Extract the smoothing parameter value from the fit result. This value will be the
target ”best value” for the simulation: λ0.

3. For j = 1 : R (R equals 999 or 1000) do:

(a) Simulate with the thinning method [Devroye, 1986, pp 253-256], ideal spike
trains whose discharge is an inhomogeneous Poisson process of instantaneous
rate: ν̂λ. The number of simulated trains is identical to the number of odor
presentations used in the original data set (Fig. 5 B to C).

(b) Fit a spsth to the simulated data using a bin width of 25 ms to get: λ(j) and
ν̃

(j)
λ (Fig. 5 D).

(c) Built the 95% confidence bands around ν̃(j)
λ and count the number of points of

{ν̂λ(xi)}Ni=1 which are inside the band (Fig. 5 D).

4. Build a box plot or an histogram of the empirical λs as well as of the fraction of
points of the true curve which are inside the confidence band.
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5. Build the estimate of E(η̃λ):

η̃λ,•(xi) =
1
R

R∑
j=1

η̃
(j)
λ (xi) i ∈ {1, . . . , N}

to obtain the pointwise bias estimate:

b(xi) = η̂λ(xi)− η̃λ,•(xi) (16)

6. Build an estimate of the pointwise coverage probability for a nominal 95 % confidence
interval:

cp(xi) = 1−
#{ν̂λ(xi) /∈ CI(xi)(j)}Rj=1

R
(17)

where CI(xi)(j) stands for the 95 % confidence interval built around ν̃(j) at point xi.

These simulations where carried out on a multi CPU desktop computer (Intel Core 2
Quad, 2.4 GHz with 8 Go RAM). In order to exploit fully the computing power of the
machine, 3 to 4 of the 4 CPUs were used simultaneously by parallelazing the above loop.
That is when 3, respectively 4, CPUs were used a total of 999, respectively 1000, data sets
were simulated by 3, respectively 4 subprocesses of R each one carrying out 333, respec-
tively 250, simulations. This trivial parallelization is very easily implemented in R with
the user contributed package, snow (for simple network of workstation), of [Tierney et al.]
and Rossini et al. [2003]. An additional element is required to ensure good statistical
properties of these parallel simulations: a random number generator able to generate sta-
tistically independent streams of random numbers. L’Ecuyer et al. [2002] developed such
a generator which has been made available as an R user contributed package by L’Ecuyer
and Leydold [2005] and Leydold [2007].

2.6 HTML report generation

Luckily the HTML report generation is the easiest part of this “Methods” section. HTML
files are plain ASCII files where tags are used to control the way text, images, etc, appear
on the browser. These tags are surrounded by“<>”symbols [Murrell, 2008, Chap. 3]. This
means that as soon one is using an analysis software which can append text to an ASCII
file it becomes possible to write an HTML file from the analysis software. Of course R can
do that and even better, thanks to Eric Lecoutre’s package R2HTML [Lecoutre, 2003], one
can write on HTML file without having to really learn HTML. Lecoutre [2003] short paper
is enough to get one going within 15 minutes.

The “strategy” we followed to develop our reportHTML methods was first to write an
R script, that is, a succession of R commands that was satisfying for what we wanted
to do (basic analysis of spike trains). We then turned this script into a function so that
arguments could be passed in order to adapt to, say, different data names. After that
we used R2HTML function HTMLInitFile at the beginning of the function to open the
resulting file, we used function HTML to write the specific computation results we wanted
to include in the HTML file, while with function HTMLInsertGraph we were able to include
graphs in the report. We ended up closing the HTML file with function HTMLEndFile. It
could hardly be simpler.

2.7 Computers and software versions used for the analysis

Unless otherwise stated (e.g., Sec. 2.5.3) the analysis described in this manuscript was
carried out on laptop PC running Linux (Ubuntu 8.04.1). R version 2.8.0 was compiled
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Figure 5: Simulation principle. A, raster plot of one of the neurons in our data set. B,
the smooth peri stimulus time histogram together with the log of the estimated λ. C, One
data set simulated as an inhomogeneous Poisson process using the smooth peri stimulus
time histogram of B. D, grey band: the 95% confidence band obtained from the the fit
of the simulated data; black curve: the “truth”, that is the smooth peri stimulus time
histogram used to simulate the data. The X axis has been blanked at the locations where
the ”truth” is out of the confidence band. The number of points of the truth which are out
of the band is indicated together with the total number of points making the smooth peri
stimulus time histogram. The log of the estimated λ is also shown. Notice two features on
D: The estimated penalty weight, λ, is larger than the true one, λ0, and the grey band is
slightly smoother than the truth. The locations where the truth is out of the confidence
bands seem to be preferentially associated with times at which the truth undergoes a“fast”
slope change. This impression is correct as will be shown in Sec. 3.2.4.
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with gcc15 4.3.1 using R’s default compilation flags. The hardware characteristics of the
laptop were: a dual core CPU (Intel Core 2) at 2 GHz with 1 GB of RAM. The same
analysis (Table 1 and 2) was also carried out on Windows PCs, one running Vista with a
Pentium D at 2.8 GHz and 1 GB of RAM, the other running XP with an Intel Core Duo
CPU at 3 GHz and 2 GB of RAM. The runtimes were roughly 10% faster with the former
and 50% faster for the latter.

2.8 Reproducing the present analysis

We are trying to implement the rather strict “reproducible research” paradigm of Gentle-
man and Temple Lang [2004]. This means that in addition to giving access to the software
(STAR) and to the data sets used in the present paper we provide a compendium [Gen-
tleman and Temple Lang, 2004] which is fundamentally a metafile containing both the
text of the present paper and the R instructions required to regenerate all the figures and
tables of the paper. By editing this metafile the interested reader can have access to the
complete description of the computations involved in the paper and change them if he/she
wants. Like the data sets, the metafile is distributed with the package. The user con-
tributed package cacheSweave of Peng [2007] has been a tremendous help for developing
our compendium.

3 Results

The general features of our data analysis procedures are illustrated and characterized
by applying them to each data set of Sec. 2.1.4. The automatic report generation is
illustrated using 2 data sets: e070528spont 4 for the “spontaneous regime” data and
e070528citronellal 1 for the “stimulus response regime” data.

3.1 Spontaneous activity analysis

Run-time as well as summary data obtained by running the same analysis on our 12
spontaneous data sets are presented first. The HTML report generated out of one of the
data set is illustrated next.

3.1.1 Robustness and run-time of spontaneous activity analysis

We do not have a formal proof of the “robustness” of our analysis routines for the gamma,
Weibull and loglogistic models but the systematic application of the same automatic meth-
ods to diverse data sets can be used to argue in favor of it. The renewal test plots
(Sec. 2.4.3) and the 6 bivariate duration distribution models (Sec. 2.4.4) were therefore sys-
tematically generated and fitted to the 12 spontaneous spike trains described in Sec. 2.1.4.
In all the cases the analysis did run smoothly. This data set contains moreover only one
spike train for which one of the bivariate duration density models can be considered as
reasonable as judged by the Q-Q plot (Sec. 2.4.4, Fig. 3). Table 1 contains the run-time
results. The run-time of report generation is also given for each data set. The latter time
is much larger than the previous ones because the Q-Q plots are included in the report as
well as the smooth version of the cross-correlograms. As expected the computation time
is proportional to the number of spikes in the train with an increase of 0.16, 0.08 and of
15 ms per spike for the renewal test plot, the fits and the reports respectively.

15http://gcc.gnu.org
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N Renewal Fit Report
e060517spont 1 356 0.41 0.22 4.13
e060517spont 2 490 0.11 0.05 4.63
e060517spont 3 216 0.05 0.03 2.42
e060817spont 1 529 0.12 0.05 10.56
e060817spont 2 1229 0.26 0.16 18.54
e060817spont 3 781 0.16 0.09 11.38
e060824spont 1 505 0.12 0.06 3.66
e060824spont 2 64 0.03 0.02 1.17
e070528spont 1 336 0.08 0.04 7.69
e070528spont 2 1173 0.25 0.11 19.74
e070528spont 3 1834 0.39 0.20 24.99
e070528spont 4 1015 0.21 0.10 16.68

Table 1: Summary statistics of spontaneous spike train analysis. N: The number of spikes.
Renewal: Time (s) required to carry out the computation and to generate the renewal test
plot (Sec. 2.4.3). Fit: Time (s) required to fit the 6 duration density models (Sec. 2.4.4).
Report: Time (s) required to generate an HTML report as detailed in Sec. 3.1.2

3.1.2 Example of automatic report generation

Our automatic spontaneous spike train analysis and report generation procedure, re-
portHTML.spikeTrain, performs sequentially the “sub-tasks” of Sec. 2.4. To avoid having
too many figures of screen shots in this paper we do not show the whole report here but it
can be seen on our web site16 and it can be reproduced by the reader on his/her computer.

Briefly, a spike train plot (Sec. 2.4.1) is made and added to the HTML report as
illustrated on the screen shot of the HTML report shown in Fig. 6 for neuron 3 of
e060817spont.

Summary information including the number of spikes, the times of the first and last
spikes, the mean isi , etc, are computed and added to the report as can be seen at the
bottom of Fig. 6.

The renewal test plots (Sec. 2.4.3, Fig. 2) are built and added to the report (not shown
on screen shots).

If other spike trains (from simultaneously recorded neurons) are provided, then cross-
correlation histograms are estimated. Two estimations methods are available (Sec. 2.4.5),
the classical histogram and a smooth version of it. Argument chh controls if a single
estimation is performed or if both are performed. Fig. 7 shows a screen shot where the
cross-correlation histograms built with neuron 3 as a reference and neuron 2 as a test.
Confidence intervals at 95% level are shown on these two cross-correlation histograms.
There is a clear deficit of spikes from neuron 2 in the 250 ms preceding neuron 3 spikes.

Function reportHTML.spikeTrain also writes to disk a data file (using the R data format)
where analysis results are stored. The data analyst can therefore quickly go back to the
intermediate results if something appears suspicious in the report.

3.2 Stimulus response analysis

Most of the analysis presented in this section will consist in a systematic application of the
same routines to each of the odor response data sets of STAR (Sec. 2.1.4). Fig. 8 shows the
smooth peri stimulus time histogram obtained for each neuron in each data set using our

16 http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder/e070528spontN1.

html
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Figure 6: The spike train plot of neuron 3 (data set: e060817spont) as it appears in the
automatically generated HTML report.

Figure 7: Smooth and“classical”cross-correlation histograms between neuron 3 (reference)
and neuron 2 (test) as they appear in the automatically generated HTML report (data
set: e060817spont). On both plots the dotted lines define a pointwise 95 % confidence
region. Notice the different ordinate scales of the two plots.
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Figure 8: The 18 smooth peri stimulus time histograms. All graphs have the same scale.
The scale bar on the left side of each plot is drawn between 10 and 20 Hz. The time axis
spans 15 s. The estimated smooth peri stimulus time histograms are shown as a 95 %
confidence band.

default preprocessing bin width. On each plot the 0.5 s opening odor delivery valve comes
around second 5. The reader can see that the data sets exhibit diverse type of responses
(but more excitation than inhibition). The basal firing rates range from 5 to 40 Hz. The
largest response is above 80 Hz.

3.2.1 Robustness and run-time of stimulus response analysis

The approach followed in Sec. 3.1.1 to study the robustness of our routines for the analysis
of the spontaneous regime is repeated here with the stimulus response regime. Smooth
peri stimulus time histograms and HTML reports were generated using the default prepro-
cessing binwidth (25 ms). In all the cases the analysis did run smoothly. Table 2 contains
the run-time results. The computation time is proportional to the number of spikes in the
train with an increase of 0.24 and of 0.3 ms per spike for the smooth peri stimulus time
histograms and the reports respectively.
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N S Duration SPSTH Report
e060517ionon 1 2073 19 15.00 3.15 4.16
e060517ionon 2 1696 19 15.00 3.09 3.91
e060517ionon 3 977 19 15.00 2.73 3.47
e060817citron 1 2639 20 15.00 2.96 3.89
e060817citron 2 6920 20 15.00 4.34 5.64
e060817citron 3 4805 20 15.00 3.16 4.41
e060817terpi 1 3117 20 15.00 3.13 4.08
e060817terpi 2 6903 20 15.00 4.54 5.73
e060817terpi 3 4762 20 15.00 3.23 4.30
e060817mix 1 2515 20 15.00 3.16 3.98
e060817mix 2 6512 20 15.00 4.50 5.60
e060817mix 3 4771 20 15.00 3.24 4.27

e060824citral 1 2065 20 15.00 3.24 4.08
e060824citral 2 599 20 15.00 3.04 3.77

e070528citronellal 1 1596 15 13.00 2.24 3.18
e070528citronellal 2 3073 15 13.00 2.50 3.19
e070528citronellal 3 5884 15 13.00 2.98 3.89
e070528citronellal 4 2873 15 13.00 2.24 3.01

Table 2: Summary statistics of stimulus response analysis. N: The total number of spikes.
S: The number of stimulations. Duration: Duration (s) of the acquisition for each stim-
ulation. SPSTH: Time (s) required to compute the smooth peri stimulus time histogram.
Report: Time (s) required to generate an HTML report.

3.2.2 Insensitivity to the preprocessing bin width

In order to put on a firmer basis our claim of insensitivity’s of our spsth to the preprocessing
bin width used, we show on Fig 9 the effect of a 5 times bin width reduction. We use the
3 neurons of data set e060817mix because a the variety of neuronal responses present in
this data set (see also Fig. 8 column 4). In order to make the comparison between the
two spsths obtained with the two bin width clearer, we only show part of the recording
window (from 5 to 10 s) and the “coarser” spsth generated with the largest bin width (25
ms, default value) appears as a 95 % confidence band. The “finer” spsth obtained with the
smallest bin width (5 ms) is shown as a black curve. It can be seen than the finer spsth is
“wigglier” and within the confidence band of the coarser. Using a 5 ms bin width instead
of a 25 ms one will therefore not essentially change our estimation.

3.2.3 Monte Carlo investigation of smoothing spline smoothing parameter se-
lection and average coverage probability for 95% confidence intervals

As described in Sec. 2.5.3 and Fig. 5 an empirical investigation of the cross-validation based
smoothing parameter selection was carried out together with an empirical determination
of the average coverage probability of the 95 % confidence intervals. The results of these
Monte Carlo simulations are summarized on Fig. 10. It can be seen that the performance-
oriented iteration algorithm slightly over smooths the data (λ > λ0 in general). This could
very well be due to the fact that our preprocessing stage (building a classical psth with
a small bin width) does itself slightly smooth the data. This slight over smoothing does
nevertheless not seem to have any consequence on the average coverage probability. But
a relatively wide distribution of the average coverage probability is seen ranging from 100
to 80 %.
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Figure 9: Absence of effect of the preprocessing bin width on the spsths. The 3 neu-
rons of data set e060817mix are illustrated (3rd column of Fig. 8). Each graph shows
the spsth obtained with the default bin width (25 ms) as a grey confidence band. The
spsth obtained with a preprocessing bin width of 5 ms is shown a black curve.
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Figure 10: A, Estimated (box plot) and actual (grey point) value of log λ. B, Estimated
average coverage probability (box plot). The nominal value appears as a dotted line.
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3.2.4 Monte Carlo investigation of the pointwise coverage probability of the
95% confidence intervals

Grace Wahba who introduced the method to compute the confidence intervals [Wahba,
1983] also took pain insisting that these intervals must be interpreted “across the func-
tion” [Wahba, 1990, p 69], that is, they are valid on average over the xis as shown on
Fig. 10. In order to avoid wrong interpretations of the confidence intervals we show in
this section the empirical pointwise coverage probability of the 95% confidence intervals in
three cases. The method used to obtain these pointwise coverage probability is explained
in Sec. 2.5.3. For each of our 18 cases we estimated the pointwise coverage probability
and, in each case, we look for its smallest value (over the xi). We then selected the three
cases which gave us the three lowest values. These 3 cases are shown on Fig. 11, the worst
case making the left column. We shown on this figure (top row) the “true” η() instead
of the ν() because that is what the algorithm is working with and actually estimating.
The second row shows the estimated bias (Sec. 2.5.3), that is, the difference between the
“truth” and the mean estimated function generated by our procedure. The bias is seen
to be large where the slope of η() changes fast. This is expected since we are penalizing
large values of the second derivative of η() (Eq. 13 and 14). Where the bias is “large”,
the pointwise coverage value (Fig. 11, bottom row) can be much smaller than the nominal
value (0.95).

3.2.5 Example of automatic report generation

A single screen shot of the full report is shown here. The full report can be seen in our
web site17 or, even better, can be generated by the reader as explained in Sec. A.18.
Our automatic analysis and its report are now briefly described. A raster plot is added
first to the report (Sec. 2.5.1) and a spsth (Sec. 2.5.2) is superposed to it (see Sec. A.17
for details). Fig. 12 shows a screen shot with this raster plot. The summary of the
inhomogeneous Poisson fit (Sec. 2.5.2) leading the spsth is added next together with a
short summary describing how accurate the hypothesis of constant intensity/rate made
during the preprocessing was given the estimated rate. A plot of the smooth PSTH
with approximate 95% CI is added (not shown on screen shot but it looks like the right
graph of Fig. 17). A Graph showing the results of the Ogata’s battery of tests for point
processes [Ogata, 1988] when the spsth is taken has a model of the neuron’s response to
individual stimulation is added next (not shown). We do not discuss further this last
point here given that showing that actual non averaged neuronal discharge are not well
described by inhomogenous Poisson process is somewhat showing the obvious. This tests
will be detailed elsewhere. The impatient reader can of course already check the help files
of STAR.

4 Discussion

Experimental techniques used in modern neuroscience research, like MEA recordings but
also long lasting single unit intra- or extra-cellular recordings, tend to generate vast
amounts of data. Experience moreover shows that the analysis of these raw data gen-
erates also a lot of “secondary” data. These quantitative aspects represent first a serious
time challenge simply because data analysis requires time. Our answer to that challenge is
to make the computer work for us. But remembering what John Tukey said: “Numerical
quantities focus on expected values, graphical summaries on unexpected values”, we make
our computer not only compute but also generate a lot of diagnostic plots. Our approach is

17http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder/

e070528citronellalN1.html
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Figure 11: The three cases giving the three lowest minimal cp(xi). Top row (A1, B1,C1):
The ”true” η, that is, the one used to simulate the data. Central row (A2, B2,C2):
The estimated pointwise bias, b(xi) (Eq. 16). Bottom row (A3, B3, C3): The estimated
pointwise coverage probabilities for a 95 % confidence interval. Dotted line: the nominal
value. On a given row, all graphs have the same scale.
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Figure 12: Raster plot with superposed smooth peri stimulus time histogram (red curve)
for neuron 1 as it appears in the automatically generated HTML report.

therefore to implement an automatic “robust” preliminary spike train analysis. Keeping in
mind that real data have a tendency to wander out of our preset frames “we” generate and
save many plots allowing us to scrutinize our analysis results, judge their trustworthiness
and if necessary go back to specific stages of our analysis.

A second issue neurophysiologists have to face when dealing with analysis of large data
sets is the management of the “secondary” data they produce. Keeping things organized
and easy to retrieve can become a problem especially for people who do not want to print
20 graphs per analyzed data set and/or have to move around with 20 kg of folders. The
computer is again the solution when combined with the HTML file format. With this
approach the 20 kg physical folder becomes an icon in the directory arborization of one’s
home directory. The analysis results become also easy to retrieve and can even be directly
be shown to colleagues in lab meetings, as we hope our few screen shots have convinced
our reader.

We have implemented both the “robust spike train analysis with lots of plots” approach
and the HTML report generation in an open source and free package: STAR. Being open
source our approach can easily be tailored to users/data specific needs. Anyone can create
his own sequence of automatic analysis steps out of the wide range of tools implemented in
STAR (supplemented, if necessary by custom developed ones) and store the results easily
in reports. For our data it turns out to work “well” (in the sense of actually doing what
we expect it to do) and fast (Table 1 and 2). But we insist again on the preliminary
aspect of this automatic analysis. Most of the data we showed require more sophisticated
analysis techniques.

The use of the smoothing spline methodology has been instrumental in the development
of a robust automatic analysis. We have tried to justify this methodological choice on both
“theoretical” (Sec. 2.5.2) and “practical” (Sec. 3.2.3 and 3.2.4) grounds. We have moreover
tried to carefully illustrate the meaning of the confidence intervals obtained with this
method (Sec. 3.2.4). Given these results we would recommend to draw spsths as confidence
bands in order to convey a better impression of what has been learned from the data. While
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looking at such bands, the reader should keep in mind that a correct pointwise confidence
interval should be larger where the estimate undergoes a fast slope change. If a data analyst
wanted to make a strong statement about differences of sharp peak on spsths, we would
recommend for now a Monte Carlo simulation to be carried out in order to correct for the
bias of the estimated spsth [following the bootstrap approach of Davison and Hinkley, 1997,
pp 364-365]. We could also consider implementing the method described by Cummins et al.
[2001] to set locally the smoothing parameter (and get a uniform coverage probability).
The other candidate approaches like the “Bayesian adaptative regression splines” (BARS)
of Wallstrom et al. [2007], local likelihood regression [Tibshirani and Hastie, 1987, Loader,
1999] or penalized regression spline [Wood, 2006] should also be made available in STAR.
All these approaches can, to some extent, be implemented automatically, provide error
bars and are available in R. A thorough comparative study of them would clearly be of
great interest for the community but that would require a separate paper. The present
STAR release already includes an interface with the penalized regression spline package
(mgcv) of Wood [2006] and the next one will include an interface with the locfit package
of Loader (for local likelihood regression) and with the BARS package, as soon as the
latter becomes available on CRAN. We will then be able to undertake such a comparative
study. Finally we have only exposed here “the tip of the iceberg” of what can be done
with smoothing spline and spike trains. The methodology can be readily extended to
multidimensional cases and provide an elegant and practical solution to, at least some,
conditional intensity estimation problems (Pouzat, Chaffiol and Gu in preparation).
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A Reproducing the analysis/figures/report of this paper: A
STAR tutorial

A.1 Getting R and STAR

R is an open source and free software that can be downloaded from: http://www.r-project.
org or from any mirror site of the Comprehensive R Archive Network (CRAN). The software
documentation and user contributed add-on packages can also be downloaded from these
sites. Precise instructions can be found on how to compile or just install from binary files
the software on many different systems.

New users can get started by reading through: “An Introduction to R” which comes
with the software18. Windows users who would feel a bit lost with the sober graphical user
interface which comes with the Windows version should consider also installing “SciViews
R GUI”: http://www.sciviews.org/SciViews-R/.

STAR is available on CRAN, it is installed like any other R add-on package. Check the
documentation of function install.packages to see how to do it.

A.2 Preliminary remarks

We present in this appendix the full sequence of commands of R and STAR leading to
the material, analysis, figures, etc, presented in this paper. We also try to give some
background information on R, to help motivated users getting started. Here different fonts
are going to be used to distinguish between what the user types following the R prompt
which will appear like:

this is what an R input is going to look like in the sequel

and what R returns which will appear like:

this is how R outputs will appear

A.2.1 Getting help

Once R is started help on any command like plot can be obtained by typing the command
name with ? as a prefix, i.e.:

> ?plot

It can also be done by using function help:

> help(plot)

A.2.2 Ending an R session

An R session is ended (from the command line) by the command:

> q()

18And that can also be found at: http://cran.r-project.org/doc/manuals/R-intro.html. In ad-
dition, among the user contributed documentations, we particularly like Emmanuel Paradis: “R for Be-
ginners” (http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf) and Thomas Lumley: “R
fundamentals” (http://faculty.washington.edu/tlumley/Rcourse/).
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A.3 Loading STAR

To use STAR, an add-on package of R, the user has to load it into R search path with the
library function as follows:

> library(STAR)

The effect of this command is to make STAR functions available to the user. Technically it
adds a new environment into which the R interpreter looks for a variable/function name
when a command is typed in by the user. Function search shows the search path used by
the interpreter:

> search()

[1] ".GlobalEnv" "package:xtable"
[3] "package:STAR" "package:gss"
[5] "package:R2HTML" "package:mgcv"
[7] "package:survival" "package:splines"
[9] "package:stats" "package:graphics"
[11] "package:grDevices" "package:utils"
[13] "package:datasets" "package:methods"
[15] "Autoloads" "package:base"

A.4 A comment on functions arguments

R functions like, library, often accept many arguments but only a few of them have to be
explicitly specified by the user. The idea is to have both control over the function behavior
and ease of use, i.e., short command lines to type in. This is implemented by defining
default values for the arguments, either explicitly in the argument list of the function or
internally in the function’s body. We can for instance look at the arguments accepted by
function library by using function args with library as argument:

> args(library)

function (package, help, pos = 2, lib.loc = NULL, character.only = FALSE,
logical.return = FALSE, warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
verbose = getOption("verbose"), version)

NULL

We see that among the 10 possible arguments of library the specification of a single one,
package, was sufficient to do what we wanted. Using explicitly the other arguments with
values different from their default ones would have allowed us to have a finer control on
what the function does.

We also remark that when we entered args(library) we passed a function, library, as an
argument of another function, args, without doing anything special. R being based on
the Scheme language [Ihaka and Gentleman, 1996] does not make any differences between
functions and other types of objects.

A.5 Loading data

All the data sets used in this paper are part of the STAR data sets which means they can
be loaded with function data. To load the data of the experiment of May 5 2007 in the
spontaneous regime which is named: “e070528spont”, we enter:
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> data(e070528spont)

Clearly users will want to use STAR with their own data so we give a very brief descrip-
tion on how data can be loaded into R. We will load the spike train of the first neuron of
the e070528spont data set. The data are in ASCII format on a distant machine and we are
going to load them through a web connection. The data file e070528spontN1.txt is located
on our lab server at the following address: http://www.biomedicale.univ-paris5.fr/
physcerv/C_Pouzat/STAR_folder/e070528spontN1.txt. The first four lines of the file
give some information about the data:

Data set: e070528
Neuron: 1
Condition: spontaneous activity
By: Antoine Chaffiol

The following line is blank and the next 336 lines contain the spike times. We are
going to use function scan to load the data. For editing purposes, we will moreover build
the address of our file piece by piece: myURL will contain the url address of the folder
containing the data file:

> myURL <- "http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/STAR_folder"

and myFileName will be the name of the file per se:

> myFileName <- "e070528spontN1.txt"

Notice the use of, “<-”, for assignments. The more common symbol, “=”, could have also
been used, e.g.:

> myFileName = "e070528spontN1.txt"

would have given the same result. The file address is then obtained by gluing together the
2 pieces, myURL and myFileName, with a “/” in between using function paste:

> myFullName <- paste(myURL, "/", myFileName, sep = "")

Function scan finishes the job and reads the data into our work space:

> e070528spontN1 <- scan(myFullName, skip = 5)

Notice that we used argument, skip, to start reading the file from the sixth line. If the
data had been on our hard drive in the current working directory (see ?getwd and ?setwd)
of R, we would have used:

> e070528spontN1 <- scan("e070528spontN1.txt", skip = 5)

The first argument of scan is just the “full path” to the data file, it does not matter if
the path includes an Internet connection or not. Functions are also available to read
data in binary format (readBin) or with table structures (read.table). Check the R Data
Import/Export manual which comes with the software for a comprehensive description of
the data import/export capabilities of R.

The new object we have loaded into our R workspace, e070528spontN1, is a trite
vector of double precision numbers, that is, a numeric object for R. To convert it into a
spikeTrain object that STAR processes in a particular way, we use function as.spikeTrain:

> e070528spontN1 <- as.spikeTrain(e070528spontN1)

Function as.spikeTrain is not doing much, it merely checks that its argument can be a proper
spikeTrain object (its elements should be strictly increasing) and gives spikeTrain class at-
tribute to the object it returns. This probably looks obscure at that stage, but it should be-
come clearer after the presentation of the “class / method” mechanism (Sec. A.7 and A.9).
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A.6 A Comment on list objects

If we look of the type of object we loaded into our work space with function data, by
calling function class on e070528spont:

> class(e070528spont)

[1] "list"

we see that it is a list. list objects are composite objects whose components can be indexed.
The different components of a list don’t have to be of the same type (or class to use the
proper terminology). list objects are a very convenient way to keep related objects together.
The number of components of a list is returned by function length:

> length(e070528spont)

[1] 4

Components of list objects can have names (it usually easier for a human to remember a
meaningful name than a number) which are returned by function names:

> names(e070528spont)

[1] "neuron 1" "neuron 2" "neuron 3" "neuron 4"

list components can be accessed either by their index or by their name, i.e.:

> e070528spont[[4]]

gives the same result as:

> e070528spont[["neuron 4"]]

When dealing with indexed objects like list objects it often happens that we want to perform
the same computation on every component of the object. We could for instance want to
see what is the class of e070528spont components. A function which will do this task and
spare us the job of writing a for loop is sapply19:

> sapply(e070528spont, class)

neuron 1 neuron 2 neuron 3 neuron 4
"spikeTrain" "spikeTrain" "spikeTrain" "spikeTrain"

In a similar way we could get the length of these spikeTrain components (if they have one):

> sapply(e070528spont, length)

neuron 1 neuron 2 neuron 3 neuron 4
336 1173 1834 1015

So we have learned that e070528spont is a list object with four named components of class
spikeTrain each one with a different length. Of course we could have gotten almost the same
information by looking at the documentation of e070528spont, by typing: ?e070528spont.

19Remember that when Ris running you can always get help on functions, like sapply, by typing: ?sapply.
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A.7 A comment on the class / method mechanism

If we look at the documentation of function as.spikeTrain (?as.spikeTrain), which creates
spikeTrain objects we learn that: “A spikeTrain object is a numeric vector whose elements
are strictly increasing (that is, something which can be interpreted as a sequence of times of
successive events with no two events occurring at the same time).” At first sight creating a
new type (class) of objects which are just classical numeric vectors with a“small”peculiarity
(the successive elements must be strictly increasing) would suggest that we are “over doing
it”. This would be ignoring the gains we can obtain from the “class / method mechanism”.

When we work regularly with a type of data which has a specific structure and that
we interpret in a specific way, we quickly end up with a “standard” way of plotting as well
as summarizing them numerically. If our favorite software provides a general function for
plotting objects say, plot, to use the name of the R function doing this job, we then often
end up writing a new function or a short script which uses plot with arguments which are
specific to the type of data we are looking at. When we have reached this stage it is worth
thinking of using the “class method mechanism” provided by R20. By doing so we will
transfer the task of finding the proper plot function from us to the R interpreter. This
mechanism works by allowing users/programmers to create new “tailored” functions for
some so called generic functionwhich are very frequently used in data analysis, like plot,
print or summary. These object specific functions are called “methods” and the objects
to which they apply must have a “class”. e070528spont[[”neuron 4”]] is for instance an
object of class spikeTrain and we have written a method, plot.spikeTrain, which does
the job of generating a plot in a spikeTrain specific manner. If we then want to plot
e070528spont[[”neuron 4”]], we don’t have to remember that it is a spikeTrain object and
enter:

> plot.spikeTrain(e070528spont[["neuron 4"]])

but only:

> plot(e070528spont[["neuron 4"]])

When plot(x) is entered, the R interpreter looks for the class of x, say, xClass, then it looks
for a method called: plot.xClass. If such a method exists then the executed command is
in fact: plot.xClass(x), otherwise it is: plot.default(x).

What have just written probably looks a bit abstract to the reader who has never
been exposed to such ideas. It can also look over complicated to programmers used to a
software environment which does not offer this functionality. But it turns out to be an
extremely efficient concept. With it “casual” users can plot spikeTrain objects and obtain
immediately a meaningful display without having to know everything about the structure
of spikeTrain objects or to know all the details of the plot function. For the non-casual user
it means a big time gain when using the software because commands are much shorter.
To the programmer it means more work on a short term, but significant gains on the mid-
to long-term because it generates a better software organization.

A.8 Spike train plot generation

By now we should have guessed that Fig. 1 is simply generated by entering:

> plot(e070528spont[[4]])

In turns out that we could have generated the same figure (except the title which would
have been slightly less informative) by entering:

20And of course to switch to R if we are not already using it!
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> e070528spont[[4]]

When the name of an single object (like e070528spont[[4]]) is typed in the command line
before pressing the return key, the R interpreter calls function print meaning that a
print method specific to the class of the object is looked for before the evaluation is
carried out. In the above example that means that what is evaluated really is:

> print.spikeTrain(e070528spont[[4]])

But we defined print.spikeTrain to be the same as plot.spikeTrain meaning that a plot is
generated just by typing a spikeTrain name at the command line before pressing return.

A.9 The class / method mechanism in action

We have just seen how to generate a plot for spikeTrain objects using transparently the
plot.spikeTrain method. As an illustration of the usefulness of the class /method mechanism,
the reader can try the following sequence of commands. First generate a plot of the
spikeTrain object, e070528spontN1, we created after loading some “raw data” (Sec. A.5):

> plot(e070528spontN1)

Now, remove the spikeTrain class attribute from e070528spontN1 with function unclass:

> e070528spontN1 <- unclass(e070528spontN1)

and plot it again:

> plot(e070528spontN1)

It is now plotted as “trite” numeric object, although its data content did not change at all.

A.10 Renewal test plot

A renewal test plot of neuron 4 of the e070528spont data set is obtained by calling function
renewalTestPlot:

> renewalTestPlot(e070528spont[[4]])

As mentioned in Sec. 2.4.3, these plots are sensitive non-stationarity detectors as illustrated
in the pkDataSet1 demo of STAR. It uses the sPK data set (?sPK) and is launched as
follows (the first command displays a list of the demos available in STAR with a short
description):

> demo(package = "STAR")

> demo(pkDataSet1)

A.11 Why is the rank more informative

In Sec. 2.4.3 we mention that plotting Oj+1 as a function of Oj is better than plotting ij+1

as a function of ij . Let us illustrate this point by generating the equivalent of the upper
left plot of Fig. 2 in term of ij instead of Oj to get Fig. 13:

> n4.isi <- diff(e070528spont[["neuron 4"]])

> plot(n4.isi[-length(n4.isi)], n4.isi[-1], pch = ".",

+ xlab = expression(i[j]), ylab = expression(i[j +

+ 1]))
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Figure 13: Plot of ij+1 versus ij (in s) for neuron 4, data set, e070528, spontaneous regime.
Compare with upper left plot of Fig. 2.

A.12 Comparing duration distribution

The theoretical quantile quantile plots of the six duration distributions fitted to the isis of
neuron 1 of the e070528spont data set are generated by function compModels, which also
does the fits and returns the Akaike’s Information Criterion value for each model.

> compModels(e070528spont[[1]])

invgauss lnorm llogis weibull rexp gamma
-594.6524 -573.2588 -556.4574 -505.4907 -501.7978 -489.7187

A.13 Comparison with the isi histogram

Although we don’t use isi histograms in our automatic spike train processing, STAR has
a function to plot it together with the fit of one of the 6 duration distributions: isiHistFit.
To superpose a fitted inverse Gaussian density, to the empirical isi histogram of neuron
1 of the e070528spont as shown on Fig. 14, we would enter:

> isiHistFit(e070528spont[[1]], "invgauss", xlim = c(0,

+ 0.5))

A.14 Doing your own isi histogram generating function

We have not included any specific function to create a “simple” histogram from the isis
of a spikeTrain object. This is because the job is done easily by calling two functions
successively. The isis are obtained from a spikeTrain object, like e070528spont[[4]], by
calling method diff without further arguments (see ?diff.spikeTrain). Then hist is called
on the result. So we are now ready to create our first R function, isiHist4ST:

> isiHist4ST <- function(mySpikeTrain, ...) hist(diff(mySpikeTrain),

+ ...)
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Isi histogram and fitted invgauss distribution for e070528spont[[1]]

CI at 95%. Sample size: 335.
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Figure 14: isi histogram (black rectangles) with superposed fitted inverse Gaussian density
(grey curve). The 10 histogram bins are set after the fit such that if the fit was good,
10% of the isis would fall into each bin. Data of neuron 1, data set, e070528, spontaneous
regime. For more details: ?isiHistFit.
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We could even go further and create a hist method for spikeTrain objects considering
that only a histogram of the isis of the train would make sense:

> hist.spikeTrain <- function(mySpikeTrain, ...) hist(diff(mySpikeTrain),

+ ...)

Simple isn’t it?

A.15 The repeatedTrain class and associated methods

To illustrate the STAR functions for dealing with “stimulus responses” we are going to
use the citronellal responses of the previous experiment. They are found under the name:
e070528citronellal in STAR. 15 stimulations (0.5 s long) were applied with 1 minute inter-
vals. As in Sec.A.5 we load the data into our work space with function data:

> data(e070528citronellal)

The data set documentation (?e070528citronellal) tells us that e070528citronellal is a list of
repeatedTrain objects, which are themselves lists of spikeTrain objects (see ?as.repeatedTrain).
Like in the spikeTrain case, the motivation to create a new class was to have methods specifi-
cally tailored to their objects. For instance the print method (print.repeatedTrain) generates
a raster plot (Fig. 15 Left):

> e070528citronellal[["neuron 1"]]

while the plot method (plot.repeatedTrain) does the same while allowing for a better control
of the output with, for instance, the specification of the stimTimeCourse argument to make
the stimulus time course appear on the plot (Fig. 15 Right):

> plot(e070528citronellal[["neuron 1"]], stim = c(6.14,

+ 6.64), main = "e070528citronellal[[\"neuron 1\"]]")

Here we have specified stim instead of stimTimeCourse since partial matching is used21

when matching functions arguments.

A.16 Classical psths with STAR

We have also included in STAR classes and methods for “classical” psths. Function
psth plots or returns a psth object. And method plot (plot.psth) plots it if it was not
already done by psth. We will use them to illustrate the interactive bin width setting
process described in Sec. 2.5.2. Using the same data as in the previous section we will
construct 2 psths, one with a bin width of 250 ms, the other one with a bin width of 25
ms. The plots (Fig. 16) also shows confidence intervals:

> psth(e070528citronellal[[1]], breaks = seq(0,

+ 13, 0.25), colCI = "grey50", ylim = c(0, 120),

+ sub = "bin width: 250 ms", stim = c(6.14,

+ 6.64))

> psth(e070528citronellal[[1]], breaks = seq(0,

+ 13, 0.025), colCI = "grey50", ylim = c(0,

+ 120), sub = "bin width: 25 ms", stim = c(6.14,

+ 6.64))

21See Se. 4.3.2: Argument matching of R Language Definition. http://cran.r-project.org/doc/

manuals/R-lang.html.
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Figure 15: Illustration of print and plot methods for repeatedTrain objects. The 15 re-
sponses of neuron 1, data set e070528citronellal are used here. Left, plot generated by:
e070528citronellal[[”neuron 1”]]. Right, plot generated by: plot(e070528citronellal[[”neuron
1”]],stim=c(6.14,6.64),main=”e070528citronellal[[n̈euron 1̈]]”). Here the user has control over
the plot title and argument stim (short for stimTimeCourse) controls the presence of the
grey rectangle in the background (signalling the odor delivery).
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Figure 16: Illustration of psth function. The 15 responses of neuron 1, data set
e070528citronellal are used here. Left, psth obtained with a bin width of 250 ms. Right,
psth obtained with a bin width of 25 ms. The 95% confidence region appears in grey.
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A.17 Details on spsths

Smooth peri stimulus time histograms are obtained in STAR with the gsspsth0 function (see
?gsspsth0). Compared to the construction of a psth , the preprocessing step involves a “too
small” bin width. Here small refers to the fastest time constant expected to be present in
the instantaneous firing rate. By default it is set to 25 ms. That can of course be changed
by the user. Function gsspsth0 calls function gss of Chong Gu’s package gss after this
preprocessing. gss does the real work of getting the spsth. It uses smoothing spline to get
the smooth estimate.

Continuing with our previous example we would get a gsspsth0 object with:

> n1CitrGSSPSTH0 <- gsspsth0(e070528citronellal[[1]])

It can be worth comparing at that stage the preprocessed data out of which the “smooth”
was constructed with the smooth itself. This is illustrated on Fig. 17 (Left) and obtained
as follows:

> X <- n1CitrGSSPSTH0$mids

> Counts <- n1CitrGSSPSTH0$counts

> theBS <- diff(X)[1]

> nbTrials <- n1CitrGSSPSTH0$nbTrials

> Y <- n1CitrGSSPSTH0$lambdaFct(X) * theBS * nbTrials

> plot(X, Counts, type = "h", xlab = "Time (s)",

+ ylab = "Counts per bin", main = "Preprocessed data and smooth estimate",

+ col = "grey60")

> lines(X, Y, col = 1, lwd = 2)

The plot of the actual spsth (Fig. 17, Right) is obtained with the plot method (plot.gsspsth0):

> plot(n1CitrGSSPSTH0, colCI = "grey50", lwd = 1,

+ stim = c(6.14, 6.64), ylim = c(0, 120))

A.18 Automatic analysis and report generation

The screen shots making the figures of the “Results” section are obtained by calling
method reportHTMLon a spikeTrain object (reportHTML.spikeTrain) and on a repeated-
Train object (reportHTML.repeatedTrain). Let us start with the former, assuming that we
have created a subdirectory report in our current working directory and that we want to
save our report there:

> reportHTML(object = e070528spont[["neuron 4"]],

+ directory = "report", filename = "e070528spont_4",

+ otherST = e070528spont[-4], laglim = c(-1,

+ 1) * 0.25, forceTT = FALSE)

gss warning in gssanova0: performance-oriented iteration fails to converge

Argument forceTT controls the generation of the theoretical quantile quantile plots and of
the Ogata’s tests battery. If is is set to FALSE the plots and tests are included in the report
only if one of the 6 duration distribution models fits the data. Passing lists of spike trains
via argument otherST induces the generation of both types of cross-correlation histograms
(by default). The lag of these cross-correlation histograms is controlled by argument
laglim. For more details, see ?reportHTML.spikeTrain. We see moreover see here that a
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Figure 17: Illustration of gsspsth0 function. Same data as Fig. 16. Left, preprocessed data
(grey) used to obtain the “smooth” (black). Right, spsth obtained with function gsspsth0.
The 95% confidence region appears in grey. The Y axis scale has been adjusted to facilitate
comparison with Fig. 16.

warning is returned: gss warning in gssanova0: performance-oriented iteration
fails to converge. After checking the documentations of reportHTML.spikeTrain, gss-
lockedTrain0 and gssanova0, we see that the argument maxiter of the latter has to be
modified in order to perform enough iterations for convegence to be attained. This pre-
cisely what the “. . .” argument of reportHTML.spikeTrain allows us to do. We therefore
repeat the report generation with an additional argument, maxiter=60, instead of the
implicit default, maxiter=30, and see if the warning disappears:

> reportHTML(object = e070528spont[["neuron 4"]],

+ directory = "report", filename = "e070528spont_4",

+ otherST = e070528spont[-4], laglim = c(-1,

+ 1) * 0.25, forceTT = FALSE, maxiter = 60)

We see that with, maxiter=60, enough iterations have been performed.
The report of a repeatedTrain object illustrated in Sec. 3.2 is obtained with:

> reportHTML(object = e070528citronellal[["neuron 1"]],

+ directory = "report", filename = "e070528citronellal_1",

+ stim = c(6.14, 6.64))

A.19 Software versions used for this tutorial

The versions of R and of the other packages used in this tutorial are obtained with function
sessionInfo:

R version 2.9.2 (2009-08-24)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=fr_FR.UTF-8;LC_NUMERIC=C;LC_TIME=fr_FR.UTF-8;LC_COLLATE=fr_FR.UTF-8;LC_MONETARY=C;LC_MESSAGES=fr_FR.UTF-8;LC_PAPER=fr_FR.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=fr_FR.UTF-8;LC_IDENTIFICATION=C
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attached base packages:
[1] splines stats graphics grDevices utils
[6] datasets methods base

other attached packages:
[1] xtable_1.5-5 STAR_0.3-2 gss_1.0-5
[4] R2HTML_1.59-1 mgcv_1.5-5 survival_2.35-5

loaded via a namespace (and not attached):
[1] grid_2.9.2 lattice_0.17-25 nlme_3.1-93
[4] tools_2.9.2

B Reproducing Fig. 4

Fig. 4 is obtained using the version of penalized iteratively re-weighted least squares de-
scribed by [Gu, 2002, pp 62, 76 and 151]. We first define a function performing solving a
penalized weighted least squares problem (together with some associated methods):

> ss_lambdaFixed <- function(y, x, lambda, w) {

+ rk <- function(x, y) {

+ k2 <- function(x) ((x - 0.5)^2 - 1/12)/2

+ k4 <- function(x) ((x - 0.5)^4 - (x -

+ 0.5)^2/2 + 7/240)/24

+ k2(x) * k2(y) - k4(abs(x - y))

+ }

+ S <- cbind(rep(1, length(x)), x - 0.5)

+ Q <- outer(x, x, rk)

+ if (!missing(w)) {

+ S <- diag(sqrt(w)) %*% S

+ y <- sqrt(w) * y

+ Q <- diag(sqrt(w)) %*% Q %*% diag(sqrt(w))

+ }

+ else {

+ w <- NULL

+ }

+ Sqr <- qr(S)

+ R <- qr.R(Sqr)

+ theQ <- qr.Q(Sqr, complete = TRUE)

+ tF1 <- t(theQ[, 1:2])

+ F2 <- theQ[, -(1:2)]

+ rm(theQ, Sqr)

+ n <- length(y)

+ G <- chol(t(F2) %*% Q %*% F2 + n * lambda *

+ diag(n - 2))

+ u <- forwardsolve(t(G), t(F2) %*% y)

+ v <- backsolve(G, u)

+ c <- F2 %*% v

+ rightMember <- (tF1 %*% y) - (tF1 %*% Q %*%

+ c)

+ d <- backsolve(R, rightMember)

+ result <- list(x = x, y = y, lambda = lambda,

+ w = w, n = n, d = d, c = c)
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+ environment(rk) <- globalenv()

+ result$rk <- rk

+ class(result) <- "simpleSmooth"

+ result

+ }

> plot.simpleSmooth <- function(x, y, ...) {

+ plot(x$x, x$y, ...)

+ }

> predict.simpleSmooth <- function(object, newx,

+ ...) {

+ if (missing(newx))

+ newx <- object$x

+ phi <- cbind(rep(1, length(newx)), newx -

+ 0.5)

+ R <- outer(newx, object$x, object$rk)

+ if (!is.null(object$w))

+ as.vector(phi %*% object$d + R %*% (sqrt(object$w) *

+ object$c))

+ else as.vector(phi %*% object$d + R %*% object$c)

+ }

We then define a function performing one iteration of the penalized iteratively re-weighted
least squares:

> gs.iter <- function(y, x, lambda, previous, transform = NULL) {

+ pred <- predict(previous, x)

+ if (!is.null(transform))

+ pred <- transform(pred)

+ w <- exp(pred)

+ u <- -y + w

+ pseudo.y <- pred - u/w

+ ss_lambdaFixed(pseudo.y, x, lambda, w)

+ }

We then keep our example of Sec. A.17 and extract the optimal λ0 from the smooth peri
stimulus time histogram fit as well. We also define some variables used in the fits at fixed
λ:

> gfit <- evalq(gfit, env = environment(n1CitrGSSPSTH0$lambdaFct))

> Count <- gfit$mf$Count

> Time <- gfit$mf$Time

> refLambda <- 10^(gfit$nlambda)/length(Time)

> T2 <- Time/ceiling(max(Time))

> binSize <- diff(n1CitrGSSPSTH0$mids)[1]

> nbT <- n1CitrGSSPSTH0$nbTrials

> rawHist <- Count/nbT/binSize

We are now ready to perform fits at fixed λ. We are going to use: λ = λ0
1000 , λ0, 1000λ0.

We perform 30 iterations for each. The initial guess for the first fit with λ = λ0 is obtained
by fitting a Gaussian regression model to the square root of the observed variable (Count).
The two other fits use the estimate of the end of the first fit as an initial guess:

> f0 <- ss_lambdaFixed(sqrt(Count), T2, refLambda)

> f1 <- gs.iter(Count, T2, refLambda, f0, function(x) 0.5 *
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+ log(x))

> fcurrent <- f1

> for (i in 1:29) fcurrent <- gs.iter(Count, T2,

+ refLambda, fcurrent)

> gcurrent <- fcurrent

> for (i in 1:29) gcurrent <- gs.iter(Count, T2,

+ refLambda * 1000, gcurrent)

> hcurrent <- fcurrent

> for (i in 1:29) hcurrent <- gs.iter(Count, T2,

+ refLambda/1000, hcurrent)
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