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Our former fully parametric approach (1)

In a joint work with Ofer Mazor and Gilles Laurent (2002, J
Neurosci Methods, 122, 43-57) we proposed (following others on
most of the points) to:

I Split the continuous raw data in 2 parts: the events and the
noise.

I Build a pseudo continuous noise trace sticking together the
noise parts in between events and estimate the second order
properties, the covariance matrix of the noise.

I Check that a noise description based on its covariance
matrix was good enough.



Our former fully parametric approach (2)



Our former fully parametric approach (3)
We did next:

I Whiten the events base on the noise covariance matrix.
I Split the events’ sample into “pure” – non superposed –

events and superposed events.
I Run an EM algorithm with a Gaussian mixture model –

using a diagonal covariance matrix for each cluster since
whitening was performed – setting the number of clusters
by minimizing the BIC.

I Notice that our explicit “generative model” was: each pure
event from a given neuron is generated by adding to a single
mother waveform an uncorrelated white Gaussian noise.

I The idea was that if both our estimated waveforms and our
noise model were correct then the sum of squares of the
residuals (RSS) of each pure event after classification should
follow a χ2 distribution.

We then ran into problems with large spikes. . .



Our former fully parametric approach (4)

The jitter problem. . .



Our former fully parametric approach (5)

The solution was to align events of a cluster on the “central”
event with a sinc (sinc(x) = sin(πx)/(πx)) interpolation.



Our former fully parametric approach (6)

I sinc based alignment was done with a discrete
oversampling by a factor of 10 (i.e. we added 9 points in
between each sample).

I Full sample classification was done in two steps:
I Try each pure waveform with each jitter value and keep the

one giving the smallest RSS.
I If the RSS is compatible with the noise, classify.
I If not, try all combinations of 2 pure waveforms. . .
I If this last step does not give a small enough RSS, tag the

event as unclassified.



Some drawbacks of our former approach

The algorithm just outlined suffered from many drawbacks, here
are some of them assuming that the key hypothesis of waveform
stationarity is valid:

I To get a good noise description based on the covariance
matrix we had to take low detection threshold leading to
many badly isolated and therefore not usable units at the
end.

I The sinc interpolation based alignment was very costly.
I Doing the alignment for each event and each waveform was

therefore even costlier.

We needed the mutlivariate Gaussian noise to be able to build
our goodness of fit (GOF) tests and that forced us to align the
events. That means that if you don’t care about GOF tests you
don’t need to bother with alignment.



Some afterthoughts

I We insisted a lot on making the analysis as automatic as
possible in order to get reproduciblity.

I There are now a bunch of wonderful tools allowing us to
simply and comprehensively detail every single step of an
analysis:

I The Sweave function of R.
I The combination of emacs and org-mode and R or Matlab

or Octave or Python or etc.
I So we get reproducibility by explaining in plain English the

“arbitrary” choices we made.
I The automatic setting of the number of clusters by the BIC

in combination with Gaussian mixture models does not
compete with the human eye plus brain helped by GGobi
(a dynamic multidimensional visualization tool).



Split explicitly clustering. . .

−15 −10 −5 0 5 10 15

−
10

0
10

20
30

Amplitude 1

A
m

pl
itu

de
 2

−15 −10 −5 0 5 10 15

−
10

0
10

20
30

Amplitude 1

A
m

pl
itu

de
 2

1
2
3
4
5

6
7
8
9
10



. . . and classification



More explicitly we propose
We take the approach of Chandra & Optican (Detection,
classification, and superposition resolution of action potentials
in multiunit single-channel recordings by an on-line real-time
neural network. IEEE Trans Biomed Eng, 1997, 44, 403-412)
but:

I We take an empirical noise sample, not its representation
based on second order statistics.

I We don’t limit ourselves to neural network based classifiers.

The key ideas here are:

I We cluster pure events and use the results of this clustering
stage to generate a “full” sample with pure and superposed
events (with jitter). . . Clearly if we get the clustering
wrong everything coming after will also be wrong.

I Classification methods / algorithm / theory are much more
advanced than their clustering counterparts, so we use
better tools when we can.



Quality checks

I The classification is based on simulated data with jitter.
That’s why we speak of “coarse” classification.

I After coarse classification, alignment is performed but with
a faster method.

I RSS comparison with the noise sample is done with the
Dvoretsky-Kiefer-Wolfowitz (DKW) inequality.

The DKW inequality states that if X1, . . . , Xn ∼ F , then for
any ε > 0,

Prob

(
sup
x
|F (x)− F̂ (x)| > ε

)
≤ 2 exp(−2nε2)

where F̂ is the empirical distribution function – these confidence
bands are just simpler to compute than the Kolmogorv-Smirnov
ones and are practically as tight.



Alignment without sinc interpolation (1)

I Let us call g(t) the observed amplitude at time t within our
cut.

I We have g(t) = f(t+ δ), where δ is our jitter induced by
sampling and noise and f is our “mother” waveform
(ignoring additive noise).

I We are going to model δ as the realization of a random
variable ∆ with theoretical mean, E∆ = 0, and a finite
variance, E (∆− E∆)2 = E∆2 ≡ σ2

∆.
I Assuming that f admits at least two derivatives (it does

since our data are low-pass filtered), we have:

g(t) = f(t) + δ f ′(t) +
δ2

2
f ′′(t) + o(δ3) .



Alignment without sinc interpolation (2)

I From our hypothesis on ∆ we have:

Eg(t) = f(t) +
σ2

∆

2
f ′′(t) + o(E∆3) ,

I That is, to the first order in δ: Eg(t) = f(t).
I That means that our template estimates are nearly

unbiased if σ2
∆ is sufficiently small.

I Now what about the variance of g(t)? We have to the first
order in δ :

E (g(t)− Eg(t))2 = E
(
δ f ′(t)

)2
=
σ2

∆

2
f ′2(t) ,

I Leading to a standard deviation (to the first order in δ):

σg(t) =
σ∆√

2
|f ′(t)| .



Alignment without sinc interpolation (3)
With actual data we have:

I g(ti) = f(ti + δ) + εi, with εi random variables with zero
mean and finite variance – not necessarily independent.

I We use a second order Taylor expansion to get:
g(ti) ≈ f(ti) + δf ′(ti) + δ2/2f ′′(ti) + εi.

I Our estimated δ, δ̂, is defined by:

δ̂ ≡ argminδ
∑
i

(
g(ti)− f(ti)− δ f ′(ti)−

δ2

2
f ′′(ti)

)2

.

I This is fast to compute once estimates of f , f ′ and f ′′ have
been obtained.

I It is safe to use the pointwise median as opposed to the
mean to get them.

I Using the first order Taylor expansion works most of the
time but not always and the extra cost generated by the
second order is “affordable”.



Self consistent quality checks (1)

I The basic idea is to compare empirical distribution of the
RSS (Residual Sum of Squares) of the classified events with
the empirical distribution of noise events’ sum of square.

I So we start by splitting data into events and noise. . .



Self consistent quality checks (2): the spikes



Self consistent quality checks (3): the noise



Self consistent quality checks (4)
After (coarse) classification we align the events (recursively):



Self consistent quality checks (5): RSS distributions



The end

Thank you all for listening!
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