
From Neurophysiological Data to Statistical
Models and Software Development

Christophe Pouzat

September 3 2013

Outline

A brief introduction to a biological problem

Raw data properties

Spike sorting: The "easy" case

Spike train analysis

Back to real data

Spike sorting: The "tough" case

A brief introduction to a biological problem

Neurophysiologists are trying to record many neurons at once
because:

I They can collect more data per experiment.
I They have reasons to think that neuronal information

processing might involve synchronization among neurons, an
hypothesis dubbed binding by synchronization in the field.

What is binding?

A toy example of a 4 neurons system. One neuron detects
triangles, one detects squares, an other one responds to objects in
the upper visual field, while the last one detects objects in the lower
visual field.

The classical example shown in binding talks

Experimental problems of binding studies

I We must be sure that the animal recognizes the complex
stimulus. The animal must therefore be conditioned.

I Working with vertebrates implies then the use of cats or
monkeys.

I We then end up looking for synchronized neurons in networks
made of 107 cells after spending months conditioning the
animal. . . It is a bit like looking for a needle in a hay stack.

I In vivo recordings in vertebrates are moreover unstable: the
heart must beat which expands the arteries. The tissue is
therefore necessarily moving around the recording electrodes.

An alternative approach: proboscis extension and olfactory
conditioning in insects

Learning curves obtained from honey bees, Apis mellifera, by
Hammer and Menzel (1995). Other insects like, most importantly
for us, cockroaches, Periplaneta americana, can also be conditioned
(Watanabe et al, 2003; Watanabe and Mizunami, 2006).

What are we trying to do?

I An elegant series of experiments by Hammer and Menzel
(1998) suggests that part of the conditioning induced neuronal
modifications occur in the first olfactory relay of the insect:
the antennal lobe.

I The (simple) idea is then to record neuronal responses in the
antennal lobe to mixtures of pure compounds like citral and
octanol in two groups of insects: one conditioned to recognize
the mixture, the other one not.

I To demonstrate synchronization in one group and not in the
other we must record several neurons at once for a long time.

A brief introduction to a biological problem

Raw data properties

Spike sorting: The "easy" case

Spike train analysis

Back to real data

Spike sorting: The "tough" case

Multi-electrodes in vivo recordings in insects

“From the outside” the neuronal activity appears as brief electrical
impulses: the action potentials or spikes.

Left, the brain and the recording probe with 16 electrodes (bright
spots). Width of one probe shank: 80 µm. Right, 1 sec of raw data
from 4 electrodes. The local extrema are the action potentials. The
insect shown on the figure is a locust, Schistocerca americana. The
figure would look almost the same if another insect, like a
cockroach, Periplaneta americana, had been used instead (Chaffiol,
2007).

Why are tetrodes used?

The last 200 ms of the previous figure. With the upper recording
site only it would be difficult to properly classify the two first large
spikes (**). With the lower site only it would be difficult to
properly classify the two spikes labeled by ##.

Other experimental techniques can also be used

A single neuron patch-clamp recording coupled to calcium imaging.
Data from Moritz Paehler and Peter Kloppenburg (Cologne
University). The above recording was performed in a preparation
where the whole brain with the antennae attached was removed
from the animal, a cockroach, Periplaneta americana, and placed in
a “patch-clamp” recording chamber. See Husch et al (2009) for
details.

A brief introduction to a biological problem

Raw data properties

Spike sorting: The "easy" case

Spike train analysis

Back to real data

Spike sorting: The "tough" case

What do we want?

I Find the number of neurons contributing to the data.
I Find the value of a set of parameters characterizing the signal

generated by each neuron (e.g., the spike waveform of each
neuron on each recording site).

I Acknowledging the classification ambiguity which can arise
from waveform similarity and/or signal corruption due to noise,
the probability for each neuron to have generated each event
(spike) in the data set.

I A method as automatic as possible.
I A method based on an explicit probabilistic model for data

generation.

Software issues

Spike sorting like any data analysis problem can be made
tremendously easier by a “proper” software choice. I work a lot with
R because:

I R is an open-source software running on
basically any computer / OS combination
available.

I It is actively maintained.
I It is an elegant programming language

derived from Lisp.
I It makes trivial parallelization really

trivial.
I It is easy to interface with fortran, C or

C++ libraries.

A similar problem (1)

I Think of a room with many people seating and talking to each
other using a language we do not know.

I Assume that microphones were placed in the room and that
their recordings are given to us.

I Our task is to isolate the discourse of each person.

A similar problem (2)

To fulfill our task we could make use of the following features:
I Some people have a low pitch voice while other have a high

pitch one.
I Some people speak loudly while other do not.
I One person can be close to one microphone and far from

another such that its talk is simultaneously recorded by the
two with different amplitudes.

I Some people speak all the time while other just utter a
comment here and there, that is, the discourse statistics
changes from person to person.

Spike Sorting as a Set of Standard Statistical Problems

With "nice" (but not so rare) data, efficient spike sorting requires:
1. Events detection followed by events space dimension reduction.
2. A clustering stage. This can be partially or fully automatized

depending on the data.
3. Events classification.

Detection illustration

Once spikes have been detected as local extrema whose absolute
value exceeds a threshold, windows are "cut" around the spike
extremum occurrence time on the raw data on each recording site.

"Clean" events

I When many neurons are active in the data set superposed
events are likely to occur.

I Such events are due to the firing of 2 different neurons within
one of our event defining window.

I Ideally we would like to identify and classify superposed events
as such.

I We proceed in 3 steps:
I A "clean" sample made of non-superposed events is first

define.
I A model of clean events is estimated on this sample.
I The initial sample is classified and superpositions are identified.

Clean events selection illustration

Dimension reduction (1)

I The events making the sample you have seen are defined on 3
ms long windows with data sampled at 15 kHz.

I This implies that 4× 15× 103 × 3× 10−3 = 180 voltage
measurements are used to describe our events.

I In other words our sample space is R180.
I Since it is hard to visualize objects and dangerous to estimate

probability densities in such a space, we usually reduce the
dimension of our sample space.

I We usually use a principal component analysis to this end. We
keep components until the projection of the data on the plane
defined by the last two appears featureless.

Dimension reduction (2)

Left, 100 spikes (scale bar: 0.5 ms). Right, 1000 spikes projected
on the subspace defined by the first 4 principal components.

High-dimensional data visualization

Before using clustering software on our data, looking at them with
a dynamic visualization software can be enlightening.

I GGobi is an open-source software also
running on Linux, Windows, Mac OS.

I It is actively maintained by Debby
Swaine, Di Cook, Duncan Temple Lang
and Andreas Buja.

Semi-automatic and automatic clustering

I We perform semi-automatic clustering with k-means or
bagged clustering.

I With these methods the user has to decide what is the
"correct" number of clusters.

I Automatic clustering is performed by fitting a Gaussian
mixture model to the data using mclust or MixMod.

I These two software provide criteria like the BIC (Bayesian
Information Criterion) or the AIC (An Information Criterion,
introduced by Akaike) to select the number of clusters.

I In practice the BIC works best but gives only an indication.

An example of clustering result

This clustering was performed with MixMod using a from 8 to 15
clusters. The BIC was minimized with 10 clusters. At that stage we
identify neurons with clusters.

The action potentials of neuron 3 (left) and 10 (right)

Site 1 Site 2

Site 3 Site 4

Site 1 Site 2

Site 3 Site 4

A brief introduction to a biological problem

Raw data properties

Spike sorting: The "easy" case

Spike train analysis

Back to real data

Spike sorting: The "tough" case

Spike trains

Once a satisfying spike sorting has been obtained, fun can continue
with the analysis of the "bar codes" made by the spike trains of
individual neurons.

Studying spike trains per se

I A central working hypothesis of systems neuroscience is that
action potential or spike occurrence times, as opposed to spike
waveforms, are the sole information carrier between brain
regions (Adrian and Zotterman, 1926).

I This hypothesis legitimates and leads to the study of spike
trains per se.

I It also encourages the development of models whose goal is to
predict the probability of occurrence of a spike at a given time,
without necessarily considering the biophysical spike generation
mechanisms.

Spike trains are not Poisson processes

The "raw data" of one bursty neuron of the cockroach antennal
lobe. 1 minute of spontaneous activity.

Homogenous Poisson Process
A homogenous Poisson process (HPP) has the following properties:
1. The process is homogenous (or stationary), that is, the

probability of observing n events in (t, t + ∆t) depends only
on ∆t and not on t. If N is the random variable describing the
number of events observed during ∆t, we have:

Prob{N = n} = pn(∆t) .

2. The process is orderly, that is:

lim
∆t→0

Prob{N > 1}
Prob{N = 1}

= 0 .

There is at most one event at a time.
3. The process is without memory, that is, if Ti is the random

variable corresponding to the interval between events i and
i + 1 then:

Prob{Ti > t + s | Ti > s} = Prob{Ti > t}, ∀i .

HPP properties

We can show (Pelat, 1996) that a HPP has the following
properties:

I There exists a ν > 0 such that:

p(Ti = t) = ν exp(−νt), t ≥ 0 ,

where p(Ti = t) stands for the probability density function
(pdf) of Ti .

I The number n of events observed in an interval (t, t + ∆t) is
the realization of a Poisson distribution of parameter ν∆t:

Prob{N = n in (t, t + ∆t)} =
(ν∆t)n

n!
exp(−ν∆t) .

Spike trains are not Poisson processes (again)

Density estimate (gray) and Poisson process fit (red) for the inter
spike intervals (ISIs) of the previous train. The largest ISI was 3.8 s.

Renewal Processes

When a Poisson process does not apply, the next "simplest"
process we can consider is the renewal process (Perkel et al, 1967)
which can be defined as:

I The ISIs of a renewal process are identically and independently
distributed (IID).

I This type of process is used to describe occurrence times of
failures in "machines" like light bulbs, hard drives, etc.

Spike trains are rarely renewal processes

Some "renewal tests" applied to the previous data. See Pouzat and
Chaffiol (2009) for details.

A counting process formalism (1)

Probabilists and Statisticians working on series of events whose
only (or most prominent) feature is there occurrence time (car
accidents, earthquakes) use a formalism based on the following
three quantities (Brillinger, 1988).

I Counting Process: For points {tj} randomly scattered along a
line, the counting process N(t) gives the number of points
observed in the interval (0, t]:

N(t) =]{tj with 0 < tj ≤ t} ,

where] stands for the cardinality (number of elements) of a
set.

A counting process formalism (2)

I History / Filtration: The history, Ht , consists of the variates
determined up to and including time t that are necessary to
describe the evolution of the counting process.

I Conditional Intensity: For the process N and history Ht , the
conditional intensity at time t is defined as:

λ(t | Ht) = lim
h↓0

Prob{event ∈ (t, t + h] | Ht}
h

,

for small h one has the interpretation:

Prob{event ∈ (t, t + h] | Ht} ≈ λ(t | Ht) h .

Meaning of "spike train analysis" in this talk

In this talk "spike train analysis" can be narrowly identified with
conditional intensity estimation:

spike train analysis ≡ get λ̂(t | Ht) ,

where λ̂ stands for an estimate of λ.

Goodness of fit tests for counting processes

I All goodness of fit tests derive from a mapping or a "time
transformation" of the observed process realization.

I Namely one introduces the integrated conditional intensity:

Λ(t) =

∫ t

0
λ(u | Hu) du .

I If Λ is correct it is not hard to show (Brown et al, 2002) that
the process defined by:

{t1, . . . , tn} 7→ {Λ(t1), . . . ,Λ(tn)} ,

is a Poisson process with rate 1.

Time transformation illustrated

An illustration with simulated data. See Pouzat and Chaffiol
(2009b) for details.

Ogata’s tests (1)

Yosihiko Ogata (1988) introduced several procedures testing the
time transformed event sequence against the uniform Poisson
hypothesis. The first test is based on the following property:

I If a homogeneous Poisson process with rate 1 is observed until
its /n/th event, then the event times, {Λ(ti)}ni=1, have a
uniform distribution on (0,Λ(tn)) (Barnard, 1953; Cox and
Lewis, 1966). This uniformity can be tested with a
Kolmogorov test.

First test displayed on the upper left

0 50 100 150

0
50

10
0

15
0

Uniform on ΛΛ Test

ΛΛ

N
((ΛΛ

))
A

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Berman's Test

U((k))

E
C

D
F

B

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uk++1 vs Uk

Uk

U
k++

1

C

0 5 10 15

0
5

10
15

20
25

30
Variance vs Mean Test

Window Length

V
ar

ia
nc

e

D

Ogata’s tests on the simulated data.

Ogata’s tests (2)

The uk defined, for k > 1, by:

uk = 1− exp (− (Λ(tk)− Λ(tk−1))) ,

should be IID with a uniform distribution on (0, 1). The empirical
cumulative distribution function (ECDF) of the sorted {uk} can be
compared to the ECDF of the null hypothesis with a Kolmogorov
test. This test is attributed to Berman in Ogata (1988) and is the
test proposed and used by Brown et al (2002).

Second test displayed on the upper right

0 50 100 150

0
50

10
0

15
0

Uniform on ΛΛ Test

ΛΛ

N
((ΛΛ

))

A

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Berman's Test

U((k))
E

C
D

F

B

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uk++1 vs Uk

Uk

U
k++

1

C

0 5 10 15

0
5

10
15

20
25

30

Variance vs Mean Test

Window Length

V
ar

ia
nc

e

D

Ogata’s tests (3)

A plot of uk+1 vs uk exhibiting a pattern would be inconsistent
with the homogeneous Poisson process hypothesis. A shortcoming
of this test is that it is only graphical and that it requires a fair
number of events to be meaningful.

Second test displayed on the lower left

0 50 100 150

0
50

10
0

15
0

Uniform on ΛΛ Test

ΛΛ

N
((ΛΛ

))

A

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Berman's Test

U((k))
E

C
D

F

B

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uk++1 vs Uk

Uk

U
k++

1

C

0 5 10 15

0
5

10
15

20
25

30

Variance vs Mean Test

Window Length

V
ar

ia
nc

e

D

Ogata’s tests (4)

The last test is obtained by splitting the transformed time axis into
Kw non-overlapping windows of the same size w , counting the
number of events in each window and getting a mean count Nw

and a variance Vw computed over the Kw windows. Using a set of
increasing window sizes: {w1, . . . ,wL} a graph of Vw as a function
of Nw is build. If the Poisson process with rate 1 hypothesis is
correct the result should fall on a straight line going through the
origin with a unit slope. Pointwise confidence intervals can be
obtained using the normal approximation of a Poisson distribution.

Second test displayed on the lower right

0 50 100 150

0
50

10
0

15
0

Uniform on ΛΛ Test

ΛΛ

N
((ΛΛ

))

A

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Berman's Test

U((k))
E

C
D

F

B

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uk++1 vs Uk

Uk

U
k++

1

C

0 5 10 15

0
5

10
15

20
25

30

Variance vs Mean Test

Window Length

V
ar

ia
nc

e

D

A new test based on Donsker’s theorem

I We propose an additional test built as follows:

Xj = Λ(tj+1)− Λ(tj)− 1 ,
Sm =

∑m
j=1 Xj ,

Wn(t) = Sbntc/
√
n .

I Donsker’s theorem (Billingsley, 1999; Durrett, 2009) implies
that if Λ is correct then Wn converges weakly to a standard
Wiener process.

I We therefore test if the observed Wn is within the tight
confidence bands obtained by Kendall et al (2007) for standard
Wiener processes.

Illustration of the proposed test

The proposed test applied to the simulated data. The boundaries
have the form: f (x ; a, b) = a + b

√
x .

Where Are We?

I We are now in the fairly unusual situation (from the
neuroscientist’s viewpoint) of knowing how to show that the
model we entertain is wrong without having an explicit
expression for this model. . .

I We now need a way to find candidates for the CI: λ(t | Ht).

What Do We "Put" in Ht?

I It is common to summarize the stationary discharge of a
neuron by its inter-spike interval (ISI) histogram.

I If the latter histogram is not a pure decreasing
mono-exponential, that implies that λ(t | Ht) will at least
depend on the elapsed time since the last spike: t − tl .

I For the real data we saw previously we also expect at least a
dependence on the length of the previous inter spike interval,
isi1. We would then have:

λ(t | Ht) = λ(t − tl , isi1) ,

that is, a Wold process.

What About The Functional Form?

I We haven’t even started yet and we are already considering a
function of at least 2 variables: t − tl , isi1. What about its
functional form?

I Following Brillinger (1988) we discretize our time axis into bins
of size h small enough to have at most 1 spike per bin.

I We are therefore lead to a binomial regression problem.
I For analytical and computational convenience we are going to

use the logistic transform:

log
(λ(t − tl , isi1) h

1− λ(t − tl , isi1) h

)
= η(t − tl , isi1) .

The Discretized Data

event time neuron lN.1 i1
14604 0 58.412 1 0.012 0.016
14605 1 58.416 1 0.016 0.016
14606 0 58.420 1 0.004 0.016
14607 1 58.424 1 0.008 0.016
14608 0 58.428 1 0.004 0.008
14609 0 58.432 1 0.008 0.008
14610 1 58.436 1 0.012 0.008
14611 0 58.440 1 0.004 0.012

event is the discretized spike train, time is the bin center time,
neuron is the neuron to whom the spikes in event belong, lN.1 is
t − tl and i1 is isi1.

Smoothing spline (1)

I Since cellular biophysics does not provide much guidance on
how to build η(t − tl , isi1) we have chosen to use the
nonparametric smoothing spline (Wahba, 1990; Gu, 2002)
approach implemented in the gss (general smoothing spline)
package of Chong Gu for R.

I η(t − tl , isi1) is then uniquely decomposed as:

η(t − tl , isi1) = η∅ + ηl(tt − l) + η1(isi1) + ηl ,1(t − tl , isi1) .

I Where for instance: ∫
η1(u)du = 0 ,

the integral being evaluated on the definition domain of the
variable isi1.

http://www.stat.purdue.edu/~chong/

Smoothing spline (2)

Given data:
Yi = η(xi) + εi , i = 1, . . . , n ,

where xi ∈ [0, 1] and εi ∼ N(0, σ2), we want to find ηρ minimizing:

1
n

n∑
i=1

(Yi − ηρ(xi))2 + ρ

∫ 1

0

(d2ηρ
dx2

)2
dx .

Smoothing spline (3)

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
A simple example with simulated data

x

y

Smoothing spline (4)

It can be shown (Wahba, 1990) that, for a given ρ, the solution of
the functional minimization problem can be expressed on a finite
basis:

ηρ(x) =
m−1∑
ν=0

dν φν(x) +
n∑

i=1

ci R1(xi , x) ,

where the functions, φν(), and R1(xi ,), are known.

Smoothing spline (5)

0.0 0.4 0.8

−
0.

6
0.

0

Cst. unpen. term

x

0.0 0.4 0.8

−
0.

6
0.

0

Linear unpen. term

x

0.0 0.4 0.8

−
0.

6
0.

0

Pen. basis fct # 20

x

0.0 0.4 0.8

−
0.

6
0.

0

Pen. basis fct # 40

x

0.0 0.4 0.8

−
0.

6
0.

0
Pen. basis fct # 60

x

0.0 0.4 0.8

−
0.

6
0.

0

Pen. basis fct # 80

x

Smoothing spline (6): What about ρ?

●
●●
●

●
●

●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●
●
●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●●
●

●
●
●●

●

●

●●
●
●

●●●

●●●

●

●
●

●

●

●
●
●●

●●
●●

●

●●

●

●
●

●

●
●

●

0.0 0.4 0.8

−
4

0
4

ρ = 0.5

x

y ●
●●
●

●
●

●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●
●
●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●●
●

●
●
●●

●

●

●●
●
●

●●●

●●●

●

●
●

●

●

●
●
●●

●●
●●

●

●●

●

●
●

●

●
●

●

0.0 0.4 0.8

−
4

0
4

ρ = 0.05

x

y ●
●●
●

●
●

●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●
●
●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●●
●

●
●
●●

●

●

●●
●
●

●●●

●●●

●

●
●

●

●

●
●
●●

●●
●●

●

●●

●

●
●

●

●
●

●

0.0 0.4 0.8

−
4

0
4

ρ = 0.005

x

y

●
●●
●

●
●

●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●
●
●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●●
●

●
●
●●

●

●

●●
●
●

●●●

●●●

●

●
●

●

●

●
●
●●

●●
●●

●

●●

●

●
●

●

●
●

●

0.0 0.4 0.8

−
4

0
4

ρ = 5e−04

x

y ●
●●
●

●
●

●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●
●
●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●●
●

●
●
●●

●

●

●●
●
●

●●●

●●●

●

●
●

●

●

●
●
●●

●●
●●

●

●●

●

●
●

●

●
●

●

0.0 0.4 0.8

−
4

0
4

ρ = 5e−05

x

y ●
●●
●

●
●

●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●
●
●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●●
●

●
●
●●

●

●

●●
●
●

●●●

●●●

●

●
●

●

●

●
●
●●

●●
●●

●

●●

●

●
●

●

●
●

●

0.0 0.4 0.8

−
4

0
4

ρ = 5e−06

x
y

Smoothing spline (7): Cross-validation

Ideally we would like ρ such that:

1
n

n∑
i=1

(ηρ(xi)− η(xi))2

is minimized. . . but we don’t know the true η. So we choose ρ
minimizing:

V0(ρ) =
1
n

n∑
i=1

(η[i]
ρ (xi)− Yi)

2 ,

where η[k]
ρ is the minimizer of the "delete-one" functional:

1
n

∑
i 6=k

(Yi − ηρ(xi))2 + ρ

∫ 1

0

(d2ηρ
dx2

)2
dx .

Smoothing spline (8)

−14 −10 −8 −6 −4

1.
2

1.
4

1.
6

1.
8

log(ρ)

rs
s

GCV
Exact

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

ρ = 0.001581139

x

y

The theory (worked out by Grace Wahba) also gives us
confidence bands

Going back to the real train

I On the next figure the actual spike train you saw previously
will be shown again.

I Three other trains will be shown with it. The second half
(t ≥ 29.5) of each of these trains has been simulated.

I The simulation was performed using the same model obtained
by fitting the first half of the data set.

Which one is the actual train?

Towards the candidate model

I We said previously that we would start with a 2 variables
model:

η(t − tl , isi1) = η∅ + ηl(tt − l) + η1(isi1) + ηl ,1(t − tl , isi1) .

I Since we are using non-parametric method we should not
apply our tests to the data used to fit the model. Otherwise
our P-values will be wrong.

I We therefore systematically split the data set in two parts, fit
the same (structural) model to each part and test it on the
other part.

An important detail (1)

The distributions of our variables, t − tl and isi1 are very
non-uniform:

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(lN.1)

x

F
n(

x)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(i1)

x

F
n(

x)

For reasons we do not fully understand yet, fits are much better if
we map our variables onto uniform ones.

An important detail (2)

We therefore map our variables using a smooth version of the
ECDF estimated from the first half of the data set.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(e1t)

x

F
n(

x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(i1t)

x

F
n(

x)

These mapped variables ECDFs are obtained from the whole data
set.

Fit Early Test Late

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

Uniform on Λ Test

Λ

N
(Λ

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Berman's Test

U(k)

E
C

D
F

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Uk+1 vs Uk

Uk
U

k+
1

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

Wiener Process Test

t

X
tn

Fit Late Test Early

0 50 100 150 200 250

0
50

10
0

15
0

20
0

Uniform on Λ Test

Λ

N
(Λ

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Berman's Test

U(k)

E
C

D
F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uk+1 vs Uk

Uk
U

k+
1

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

Wiener Process Test

t

X
tn

The functional forms: Uni-variate terms

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

0
1

2

Elapsed time since last spike

Probability scale

η 1

0 1 2 3

−
3

−
1

0
1

2

Elapsed time since last spike

Time (s)
η 1

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

Last ISI

Probability scale

η i
1

0 1 2 3

−
0.

5
0.

0
0.

5

Last ISI

Time (s)

η i
1

The functional forms: Interaction term

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

term e1t:i1t

e1t

i1
t

 −2

 −2

 −1.5

 −1.5

 −1

 −1

 −0.5

 −0.5

 0 0

 0.5

 0.5

 1

 1

 1.5

 1.5

 2

 2

term e1t:i1t

e1t
i1

t

 −1.5

 −1.5

 −0.5

 −0.5
 0 0

 0.5

 0.5

 1

 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

 0.1

 0.1

 0.1

 0.1

 0.2

 0.2

 0.2

 0.2

 0.3

 0.3

 0.3

 0.3

 0.4

 0.4

 0.4

 0.4

e1t

i1
t

m
ean

Mean of term e1t:i1t

time since last (s)

last isi (s)

m
ean

Acknowledgments

I would like to warmly thank:
I Roberto Fernandez for his kind invitation.
I Ofer Mazor, Matthieu Delescluse, Gilles Laurent, Jean Diebolt

and Pascal Viot for working with me on the spike sorting
problem.

I Antoine Chaffiol and the whole Kloppenburg lab (Univ. of
Cologne) for providing high quality data and for being patient
enough with a slow developer like myself.

I Chong Gu for developing the gss package and for
collaborating on this conditional intensity estimation problem.

I The R guys for making such a wonderful data analysis tool.
I Vilmos Prokaj, Olivier Faugeras and Jonhatan Touboul for

pointing Donsker’s theorem to me.
I You guys for listening to me up to that point.

A brief introduction to a biological problem

Raw data properties

Spike sorting: The "easy" case

Spike train analysis

Back to real data

Spike sorting: The "tough" case

A Model for spike trains: Actual spike trains are not Poisson

Example of Inter Spike Interval (ISI) densities obtained from 4
simultaneously recorded Projection Neurons.

A Model for spike trains: Log-normal density

Empirical ISI densities are better described by a log-normal density
than by a Poisson density :

πisi (ISI = isi | S = s,F = f) =
1

isi · f ·
√
2π
·exp

[
−1
2
·
(
ln isi − ln s

f

)2
]

where, S is a scale parameter (measured in sec) and F is a
dimensionless shape parameter.

Spike shapes are not (always) stationary

Recording form rat sagittal cerebellar slices, along the Purkinje cell
layer. Right: ∗ ∗ ∗, 3 consecutive spikes from a single Purkinje cell.
Scale bar: 10 ms. Recording made M. Delescluse.

Description of the amplitude dependence on the ISI

We will describe the spike amplitude, a, dependence upon the ISI
with an exponential relaxation (Fee et al, 1996):

a (isi) = p · (1− δ · exp (−λ · isi))

where p is the maximal peak amplitude, δ is the maximal
modulation and λ is the inverse of the relaxation time constant.

A data generation model

We will now adopt the following data generation model:

I The discharge statistics of individual neurons is described by a
log-normal point process.

I The spike amplitudes generated by a single neuron depends on
the elapsed time since the last spike of the same neuron. This
dependence is an exponential relaxation.

I The background noise is Gaussian, white and statistically
independent of the spikes.

Ideal single neuron data according to our model

We will not enter into
details here but it is very
easy to maximize the
likelihood of such data,
or, in other words, to find
the most likely parameter
values given the data.

Notations for multi-neuron data

I We will use Θ to designate the full list of model parameters:

Θ = (P1,∆1,Λ1,S1,F1, . . . ,PK ,∆K ,ΛK , SK ,FK) .

I We will formalize our ignorance of the origin of each spike, j,
by attaching to it a label, Lj ∈ {1, . . . ,K}. lj = 3, means that
spike, j, is attributed to neuron 3 of the model.

I We will call configuration, C, the set of labels:

C = (L1, . . . , LN)T .

There are KN different configurations.

The "Bayesian" approach (1)

I We will adopt the Bayesian approach to statistical inference.
I We want here to obtain values and confidence intervals, for

our model parameters, Θ and for the configuration, C. More
generally we will try to obtain probability density functions for
Θ and C.

I The Bayesian approach is based on the following identities:

Prob (data, c , θ) = Prob (data, c | θ) · Prob (θ) ,
= Prob (θ, c | data) · Prob (data) .

I The last identity leads to:

Prob (θ, c | data) =
Prob (data, c | θ) Prob (θ)

Prob (data)
.

I Prob (data, c | θ) is nothing else than the likelihood function.

The "Bayesian" approach (2)

I The denominator or normalizing constant can be rewritten as:

Prob (data) =
∑
c∈C

∫
dθ Prob (data, c | θ) · Prob (θ) ,

where C is the set of all configurations.
I The quantity Prob (θ) is called the prior density on model

parameters.

Problems of the Bayesian approach

I We are interested in getting: Prob (θ, c | data), for then we
can obtain an answer to any question like: What is the
posterior probability of configuration c? It is "simply":∫
dθ Prob (θ, c | data).

I But to get Prob (θ, c | data) we need to compute the
normalizing constant:

Prob (data) =
∑
c∈C

∫
dθ Prob (data, c | θ) · Prob (θ) ,

which requires a continuous summation on the parameters
space and a discrete one on a set with KN elements! This is
much too large for realistic situations where K ∼ 10 and
N ∼ 1000 !

I How shall we do?

Did somebody else already solve our problem?

I Before scratching our heads for too long or, even worst, giving
up our nice data generation model, we could look if someone
else already solved our problem.

I In such situations it seems a good idea to look at what
physicists did since these guys are extremely gifted to write
down problems they can’t explicitly solve. . . Before finding a
way around them.

I In our case, statistical physics turned out to be the right field
to explore. . . in particular the Potts model.

What is a Potts model? (1)

I A Potts model on an N × N square lattice is network whose
nodes can have q ≥ 2 possible values.

I The energy of a Potts model configuration (or micro state) is
given by:

E (c = {l1,1, . . . , lN,N}) = −J
∑

neighboring pairs

δli,j ,li′,j′ ,

where δ is the Kroenecker symbol.

What is a Potts model? (2)

I The probability to find the lattice in a particular configuration
is given by the Boltzmann distribution:

πBolztmann,β (c) =
exp (−β E (c))

Zβ
,

with β = (kT)−1,

Zβ =
∑
c∈C

exp (−β E (c))

is the normalizing constant or partition function and the set C
of all configurations has qN

2
elements.

The problems of Potts models

I Physicists are interested in computing expected values, because
these are the quantities they can measure experimentally.

I They want for instance to get the expected energy which is
formally obtained with:

〈E 〉β =
∑
c∈C

E (c) exp (−β E (c))

Zβ
.

I But such expected value calculations always involve
summations over sets whose number of elements are too large.

Its solution

I In 1953, Metropolis et al found the solution to the expectation
computation problem.

I The idea is to generate a Markov chain on the configurations
set: {

c1, c2, . . . , cM
}
.

I This Markov chain is generated such that:

lim
M→∞

1
M

M∑
j=1

E
(
c(j)
)

= 〈E 〉β ,

where c(j) ∈
{
c1, c2, . . . , cM

}
stands for the configuration

"visited" by the chain at step j.

An adaptation of the physicists’ solution to our spike sorting
problem

I Following Metropolis et al, as well aw many physicists and
statisticians after them we will generate a Markov chain on our
configuration set and on our model parameter space:{

c1, c2, . . . , cM
}
×Θ .

I We won’t detail here how we precisely build this Markov chain.
It just takes time and patience!

I The general class of methods we are implementing here is
called Dynamic Monte Carlo by physicists and Markov Chain
Monte Carlo (MCMC) by statisticians.

An example on simulated data

A, Data from 2 electrodes with 3 active neurons. We will use (and
show) only the peak amplitudes of the spikes. B, The peak
amplitude of each spike on the second recording site is shown
against its peak amplitude on the first. C, Ideal iso-density plots of
the 3 neurons. D, Amplitude dynamics and ISI densities of the 3
neurons.

Energy evolution: evidence for slow relaxation

By analogy with Physics we define the energy of our spike train as
follows:

E (c , θ) = − ln [Prob (data, c | θ) Prob (θ)]

and we get:

Posterior density of the amplitude parameters of the red
neuron

Removing the slow relaxation: a spin glass analogy

I The slow relaxation means that our algorithm has a relatively
high computational cost.

I We can again look at Statistical Physics to see if some similar
problems were described and solved.

I They were indeed found with spin glasses which in the case of
Potts model look like:

E (c = {l1,1, . . . , lN,N}) = −
∑

neighboring pairs

J
(
li ,j , li ′,j ′

)
δli,j ,li′,j′ ,

where J
(
li ,j , li ′,j ′

)
is the realization of a random variable

(typically Gaussian with mean 0 and SD 1).

One spin glass solution to the slow relaxation

I One trick developed by physicists (in fact, statisticians found it
first) is to generate parallel Markov chains on the same
configuration space but with Boltzmann distributions
corresponding to different temperatures.

I Some exchange between the configurations of different chains
(at different temperatures) are then used.

I The idea is to exploit the "fast" configuration space
exploration of the chain at high temperature which is less
sensitive to local energy minima.

I This technique is known as: the Replica Exchange Method
(REM), the Parallel tempering Method or the Metropolis
Coupled MCMC.

Implementation of the REM

Posterior density of the amplitude parameters of the red
neuron with the REM

Why does the REM work?

Do we get good sorting?

We end up with 50 errors for 2966 spikes.

	A brief introduction to a biological problem
	Raw data properties
	Spike sorting: The "easy" case
	Spike train analysis
	Back to real data
	Spike sorting: The "tough" case

