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Data’s origin

Viewed "from the outside", neurons generate brief electrical pulses:
the action potentials

Left, the brain of an insect with the recording probe on which 16
electrodes (the bright spots) have been etched. Each probe’s
branch has a 80 µm width. Right, 1 sec of data from 4 electrodes.
The spikes are the action potentials.



Spike trains
After a "rather heavy" pre-processing called spike sorting, the
raster plot representing the spike trains can be built:



Non-stationary regime: odor responses

20 stimulation with citronellal. Stimulation are delivered during 500
ms (gray background). Is neuron 2 responding to the stimulation?
Cockroach (Periplaneta americana) recordings and spike sorting by
Antoine Chaffiol.



Neuron 1: 20 stimulation with citronellal, terpineol and a mixture
of the two. Are the reponses any different?



What do we want?

I We want to estimate the peri-stimulus time histogram (PSTH)
considered as an observation from an inhomogeneous Poisson
process.

I In addition to estimation we want to:
I Test if a neuron is responding to a given stimulation.
I Test if the responses of a given neuron to two different

stimulations are different.

I This implies building some sort of confidence bands around our
best estimation.
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The PSTH

We go from the raw data to an histogram built with a tiny time step
(25 ms), leading to an estimator with little bias and large variance.



I We model this "averaged process" as an inhomogeneous
Poisson process with intensity λ(t).

I The histogram we just built can then be seen as the
observation of a collection of Poisson random variables,
{Y1, . . . ,Yk}, with parameters:

n

∫ ti+δ/2

ti−δ/2
λ(u) du ≈ n λ(ti ) δ , i = 1, . . . , k ,

where ti is the center of a class (bin), δ is the bin width, n is
the number of stimulations and k is the number of bins.

I A piecewise constant estimator of λ(t) is then obtained with:

λ̂(t) = yi/(nδ) , if t ∈ [ti − δ/2, ti + δ/2) .

This is the "classical" PSTH.



I We are going to assume that λ(t) is smooth—this is a very
reasonable assumption given what we know about the insect
olfactory system.

I We can then attempt to improve on the "classical" PSTH by
trading a little bias increase for (an hopefully large) variance
decrease.

I Many nonparametric methods are available to do that: kernel
regression, local polynomials, smoothing splines, wavelets, etc.

I A problem in the case of the PSTH is that the observed counts
({y1, . . . , yk}) follow Poisson distributions with different
parameters implying that they have different variances.

I We have then at least two possibilities: i) use a generalized
linear model (GLM); ii) transform the data to stabilize the
variance.

I We are going to use the second approach.



Variance stabilisation

I Following Brown, Cai and Zhou (2010), let’s consider
X1, . . . ,Xn IID from a Poisson distribution with parameter ν.

I Define X =
∑n

j=1 Xj , the CLT gives us:

√
n (X/n − ν)

L→ N (0, ν) as n→∞ .

I A variance stabilizing transformation is a function G : R→ R,
such that:

G ′(x) = 1/
√
x .

I The delta method (or the error propagation method; a first
order Taylor expansion) then yields:

√
n (G (X/n)− G (ν))

L→ N (0, 1) .



I It is known (Anscombe, 1948) that the variance stabilizing
properties can be further improved by using transformation of
the form:

Hn(X ) = G

(
X + a

n + b

)
for suitable choices of a and b.

I In nonparametric regression we want to set a and b such that
E (Hn(X )) optimally matches G (ν).

I Brown, Cai and Zhou (2010) show that in all relevant PSTH
estimation problems we have:

Var
(
2
√

(X + 1/4)/n
)

=
1
n

+ O(n−2) .

I They also show that:

E
(
2
√

(X + 1/4)/n
)
− 2
√
ν = O(n−2) .

I They get similar transformations for binomial and negative
binomial random variables.



Example



Nonparametric estimation

I Since our knowledge of the biophysics of these neurons and of
the network they form is still in its infancy, we can hardly
propose a reasonable parametric from for our PSTHs (or their
variance stabilized versions).

I We therefore model our stabilized PSTH by:

Zi
.

= 2
√

(Yi + 1/4)/n = r(ti ) + εiσ ,

where the εi
IID∼ N (0, 1), r is assumed "smooth" and is

estimated with a linear smoother (kernel regression, local
polynomials, smoothing splines) or with wavelets (or with any
nonparametric method you like).



I Following Larry Wasserman (All of Nonparametric Statistics,
2006) we define a linear smoother by a collection of functions
l(t) = (l1(t), . . . , lk(t))T such that:

r̂(t) =
k∑

i=1

li (t)Zi .

I The simplest smoother we are going to use is built from the
tricube kernel:

K (t) =
70
81

(
1− |t|3

)3
I (t) ,

where I (t) is the indicator function of [−1, 1].
I The functions li are then defined by:

li (t) =
K
(
t−ti
h

)∑k
j=1 K

(
t−tj
h

) .



I When using this kind of approach the choice of the bandwidth
h is clearly critical.

I Since after variance stabilization the variance is known we can
set our bandwidth by minimizing Mallows’ Cp criterion instead
of using cross-validation. For (soft) wavelet thresholding we
use the universal threshold that requires the knowledge (or an
estimation) of the variance.

I More explicitly, with linear smoothers our estimations(
r̂(t1), . . . , r̂(tk)

)
T can be written in matrix form as:

r̂ = L(h) Z ,

where L(h) is the k × k symmetric matrix whose element (i , j)
is given by li (tj).



I Ideally we would like to set ĥ as:

argmin
h

(1/k)
k∑

i=1

(r(ti )− r̂(ti ))2 .

I But we don’t know r (that’s what we want to estimate!) so
we minimize Mallows’ Cp criterion:

(1/k)
k∑

i=1

(Zi − r̂(ti ))2 + 2σ2tr (L(h)) /k ,

where tr (L(h)) stands for the trace of L(h).
I If we don’t know σ2, we minimize the cross-validation criterion:

1
k

k∑
i=1

(Zi − r̂(ti ))2

1− Lii (h)
.



Left: CV score in black, Cp score in red. Right: Variance stabilized
data (black) with Nadaraya-Watson estimator (red) with "best"
bandwidth.



Residuals obtained with the Nadaraya-Watson estimator. The red
dashed lines correspond to ±σ.



Nadaraya-Watson estimator (red), smoothing splines estimator
(blue) and wavelet estimator (black; Haar wavelets, soft
thresholding, universal threshold).
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Confidence sets

I Keeping in line with Wasserman (2006), we consider that
providing an estimate r̂ of a curve r is not sufficient for
drawing scientific conclusions.

I We would like to provide a confidence set for r in the form of
a band:

B = {s : l(t) ≤ s(t) ≤ u(t), ∀t ∈ [a, b]}

based on a pair of functions (l(t), u(t)).
I We would like to have:

Pr {r ∈ B} ≥ 1− α

for all r ∈ R where R is a large class of functions.



I When working with smoothers, our estimators exhibit a bias
that does not disappear even with large sample sizes.

I We will therefore try to built sets around r = E(r̂); that will
be sufficient to address some of the questions we started with.

I For a linear smoother, r̂(t) =
∑k

i=1 li (t)Zi , we have:

r(t) = E (r̂(t)) =
k∑

i=1

li (t)r(ti )

and

Var (r̂(t)) = σ2
k∑

i=1

li (t)2 = (1/n)‖l(t)‖2 .

Remember that we stabilized the variance at 1/n.
I We will consider a confidence band for r(t) of the form:

I (t) =
(
r̂(t)− c‖l(t)‖/

√
n, r̂(t) + c‖l(t)‖/

√
n
)
,

for some c > 0 and a ≤ t ≤ b.



Following Sun and Loader (1994), we have:

Pr {r(t) /∈ I (t) for some t ∈ [a, b]} = Pr
{
maxt∈[a,b]

|r̂(t)−r(t)|
‖l(t)‖/

√
n
> c
}
,

= Pr
{
maxt∈[a,b]

|
∑k

i=1(εi/
√
n)li (t)|

‖l(t)‖/
√
n

> c
}
,

= Pr
{
maxt∈[a,b] |W (t)| > c

}
,

where W (t) =
∑k

i=1 εi li (t)/‖l(t)‖ is a Gaussian process. To find c
we need to know the distribution of the maximum of a Gaussian
process. Sun and Loader (1994) showed the tube formula:

Pr

{
max
t∈[a,b]

|
k∑

i=1

εi li (t)/‖l(t)‖| > c

}
≈ 2 (1− Φ(c)) +

κ0

π
exp−c2

2
,

for large c , where, in our case, κ0 ≈ (b − a)/h
(∫ b

a K ′(t)2dt
)1/2

.
We get c by solving:

2 (1− Φ(c)) +
κ0

π
exp−c2

2
= α .



Variance stabilized data (black) Nadaraya-Watson estimator (blue)
and 0.95 confidence band (red).



Do you remember this slide?

20 stimulation with citronellal. Stimulation are delivered during 500
ms (gray background). Is neuron 2 responding to the stimulation?



Since the null hypothesis is a constant, there is no bias and we can
increase the bandwidth (right side) if necessary.
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Remember again?

Neuron 1: 20 stimulation with citronellal, terpineol and a mixture
of the two. Are the reponses any different?



Setting the test

I We start like previously by building a "classical" PSTH with
very fine bins (25 ms) with the citronellal and terpineol trials
to get: {y citron1 , . . . , y citronk } and {y terpi1 , . . . , y terpik }.

I We stabilize the variance as we did before
(zi = 2

√
(yi + 0.25)/n) to get: {zcitron1 , . . . , zcitronk } and

{z terpi1 , . . . , z terpik }.
I Our null hypothesis is that the two underlying inhomogeneous

Poisson processes are the same, therefore:

zcitroni = r(ti ) + εcitroni σ and z terpii = r(ti ) + εterpii σ ,

then
z terpii − zcitroni =

√
2εiσ .

I We then want to test if our collection of observed differences
{z terpi1 − zcitron1 , . . . , z terpik − zcitronk } is compatible with k IID
draws from N (0, 2σ2).



Invariance principle / Donsker theorem

Theorem
If X1,X2, . . . is a sequence of IID random variables such that
E(Xi ) = 0 and E(X 2

i ) = 1, then the sequence of processes:

Sk(t) =
1√
k

bktc∑
i=0

Xi , 0 ≤ t ≤ 1, X0 = 0

converges in law towards a canonical Brownian motion.

Proof
You can find a proof in:

I R Durrett (2009) Probability: Theory and Examples. CUP.
Sec. 7.6, pp 323-329 ;

I P Billingsley (1999) Convergence of Probability Measures.
Wiley. p 121.



Recognizing a Brownian motion when we see one

I Under our null hypothesis (same inhomogeneous Poisson
process for citronellal and terpineol), the random variables:

Z terpi
i − Z citron

i√
2σ

,

should correspond to the Xi of Donsker’s theorem.
I We can then construct Sk(t) and check if the observed

trajectory looks Brownian or not.
I Ideally, we would like to define a domain in [0, 1]× R

containing the realizations of a canonical Brownian motion
with a given probability.

I To have a reasonable power, we would like the surface of this
domain to be minimal.



Does this look like the realization of a canonical Brownian motion?



I In a (non trivial) paper, Kendall, Marin et Robert (2007)
showed that the upper boundary of this minimal surface
domain is given by:

u∗(t) ≡
√
−W−1 (−(κt)2))

√
t, for κ t ≤ 1/

√
e

where W-1 is the secondary real branch of the Lambert W
function (defined as the solution of W (z) expW (z) = z); κ
being adjusted to get the desired probability.

I They also showed that a domain whose upper boundary is
given by: u(t) = a + b

√
t is almost of minimal surface (a > 0

and b > 0 being adjusted to get the correct probability).
I Loader and Deely (1987) give a very efficient algorithm to

adjust a and b or κ.
I The R package STAR (Spike Train Analysis with R) provides all

that (and much more) out of the box.



Almost minimal surface domains with probabilities 0.95 (dashed
red) and 0.99 (red) of containing an observed canonical Brownian
motion. Black: terpineol - citronellal; blue: odd terpineol trials -
even terpineol trials.
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