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1 Introduction: delayed responses, working memory, persistent
activity and all that

It starts with Fuster in 1973

A delayed-response trial typically consists of the presentation of one of two possible visual
cues, an ensuing period of enforced delay and, at the end of it, a choice of motor response
in accord with the cue. The temporal separation between cue and response is the principal
element making the delayed response procedure a test of an operationally defined short-term
memory function.

Reference: Fuster J. (1973) Unit Activity in Prefrontal Cortex During Delayed-Response Performance:
Neuronal Correlates of Transient Memory. J. Neurophys. 36: 61-78.



Fuster’s paradigm
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¥ic. 4. Unit of type D during five delayed-response trials with 32.sec delay. Spikes are represented by
vertical lines in a graphic display ebtained by computer method. The notation next to the arrow at the
end of ecach trial's delay refers to the accuracy (C, correet; 1, incorrect) and side (R, right; L, left) of the
response. The series of single-trial records in this figure—as in subsequent figures—is made of records from
consecutive trials.

Fic. 1. Diagram of an experimental animal in
the testing apparatus,

Figures 1 and 4 of Fuster (1973).

Other delayed activities are observed
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FiG, 6. Unit of type C. Note absence of sustained activation on dry-run trials (ilth and seventh).

Figure 6 of Fuster (1973).



A “modern” version of Fuster’s paradigm
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Adaptation of figures from Funahashi et al (1989) by Constantinidis et al (2018).
References:

e S. Funahashi, C. J. Bruce, and P. S. Goldman-Rakic (1989) Mnemonic coding of visual space in
the monkey’s dorsolateral prefrontal cortex/. J. Neurophys. 61: 341-349.

e Christos Constantinidis, Shintaro Funahashi, Daeyeol Lee, John D. Murray, Xue-Lian Qi, Min
Wang and Amy F.T. Arnsten (2018) Persistent Spiking Activity Underlies Working Memory| Jour-
nal of Neuroscience 38 (32): 7020-7028.


https://journals.physiology.org/doi/abs/10.1152/jn.1989.61.2.331?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
https://journals.physiology.org/doi/abs/10.1152/jn.1989.61.2.331?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
https://www.jneurosci.org/content/38/32/7020
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A better view of the rasters
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Funahashi et al (1989) Figure 3.
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Changing the delay
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Funahashi et al (1989) Figure 11.

What happens when mistakes are made?
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Funahashi et al (1989) Figure 13.
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Parametric working memory

Neuronal correlates of MWW AN

parametric working memory < 500 ms >
in the prefrontal cortex PD KD Base Comparison KU PB

Ranulfo Romo, Carlos D. Brody, Adrian Hernandez
& Luis Lemus

Instituto de Fisiologia Celular, Universidad Nacional Autonoma de México,
México DLF 04510, Méxice

Romo et al (1999) title and figure 1la.

Reference: Romo, R., Brody, C., Hernandez, A. et al. Neuronal correlates of parametric working
memory in the prefrontal cortex. Nature 399, 470-473 (1999). https://doi.org,/10.1038/20939.

%%H“ ‘*‘h“flh;-s : '_ -
j\‘l‘*ﬂ l\-"'l.l “‘x &ﬁ”ﬁm : ‘m_

10 15 20 25 30 35
Stimulus frequency (Hz)

Part of Romo et al (1999) figure 2.


https://www.nature.com/articles/20939
https://www.nature.com/articles/20939

First modelling efforts

Synaptic reverberation underlying
mnemonic persistent activity

Xiao-Jing Wang

Stimulus-specific persistent neural activity is the neural process underlying persistent activity to subserve working memory, it
active (working) memory. Since its discovery 30 years ago, mnemonic activity must be stimulus-selective, and therefore information-
has been hypothesized to be sustained by synaptic reverberation in a recurrent  apecific. Morcover, it must be able to be turned on and
circuit. Recently, experimental and modeling work has begun to test the switched off rapidly (=100 ms) by transient inputs,
reverberation hypothesis at the cellular level, Moreover, theory has been For 30 years, persistent activity in the cortex has
developed to describe memory storage of an analog stimulus (such as spatial been documented by numerous unit recordings from
location or eye position), in terms of continuous ‘bump attractors’ and ‘line behaving monkeys during working memory tasks
attractors. This review summarizes new studies, and discusses insights and (Box 1), How does stimulus-selective persistent
predictions from biophysically based models. The stability of a working activity arise in aneural network? Can we explain
memaory network is recognized as a serious problem; stability can be achieved persistent activity in terms of the biophysics of

it reverberation is largely mediated by NMDA receptors at recurrent synapses. neurons and synapses, and circoit connectivity”?

Reference: Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neu-
rosci. 2001 Aug;24(8):455-63. doi: 10.1016/s0166-2236(00)01868-3.

Cellular substrate

Heterogeneity in the pyramidal network of the
medial prefrontal cortex

Yun Wang', Henry Markram?, Philip H Goodman®, Thomas K Berger?, Junying Ma' &
Patricia S Goldman-Rakic*>

The prefrontal cortex is specially adapted to generate persistent activity that outlasts stimuli and is resistant to distractors,
presumed to be the basis of working memory. The pyramidal network that supports this activity is unknown. Multineuron patch-
clamp recordings in the ferret medial prefrontal cortex showed a heterogeneity of synapses interconnecting distinct subnetworks
of different pyramidal cells. One subnetwork was similar to the pyramidal network commonly found in primary sensory areas,
consisting of accommodating pyramidal cells interconnected with depressing synapses. The other subnetwork contained complex
pyramidal cells with dual apical dendrites displaying nonaccommodating discharge patterns; these cells were hyper-reciprocally
connected with facilitating synapses displaying pronounced synaptic augmentation and post-tetanic potentiation. These cellular,
synaptic and network properties could amplify recurrent interactions between pyramidal neurons and support persistent activity in
the prefrontal cortex.

Reference: Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P. S.
(2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience,
9(4), 534-542. d0i:10.1038,/un1670.

This is not the whole story!

e NMDA receptors are also involved: Min Wang, Yang Yang, Ching-Jung Wang, Nao J. Gamo,
Lu E. Jin, James A. Mazer, John H. Morrison, Xiao-Jing Wang, Amy F.T. Arnsten (2013) NMDA
Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal
Cortex. Neuron, 77 (4): 736-749.

e Dopamine also plays a key role: MIN WANG, SUSHEEL VIJAYRAGHAVAN, PATRICIA S.
GOLDMAN-RAKIC (2004) |Selective D2 Receptor Actions on the Functional Circuitry of Working
Memory. SCIENCE, 303: 853-856


https://doi.org/10.1016/S0166-2236(00)01868-3
https://doi.org/10.1038/nn1670
https://doi.org/10.1016/j.neuron.2012.12.032
https://doi.org/10.1016/j.neuron.2012.12.032
https://doi.org/10.1016/j.neuron.2012.12.032
https://science.sciencemag.org/content/303/5659/853
https://science.sciencemag.org/content/303/5659/853
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Figure 1 of Wang et al (2006).

Models with short term facilitation

ELSEVIER

b 10 Hz ’

t

200mY 0.5 mY

8

T

w
=)
=
=2
B

NN UNTN
30 Hz

me

ITIRNATY L

(2]

o= 1 H
084 10k
- 20 Hz

J == 30Hz
06 o~ 50 Hz
i 2 3 465 6 7 8
o EPSF order

d =

12

10

0.8

EPSPst amp (mV)

0.6

0.4 s e e e
0 10 20 30 40 50 &0 7O
Presymaptic frequency (Hz)

Available online at www.sciencedirect.com

ScienceDirect

Working models of working memory

Omri Barak' and Misha Tsodyks?

Working memory is a system that maintains and manipulates
information for several seconds during the planning and
execution of many cognitive tasks. Traditionally, it was believed
that the neuronal underpinning of working memory is stationary
persistent firing of selective neuronal populations. Recent
advances introduced new ideas regarding possible
mechanisms of working memory, such as short-term synaptic
facilitation, precise tuning of recurrent excitation and inhibition,
and intrinsic network dynamics. These ideas are motivated by
computational considerations and careful analysis of
experimental data. Taken together, they may indicate the
plethora of different processes underlying working memary in
the brain.

activity related o storing a fixed item is not stationary,
and there is a large heterogeneity in the firing profiles of
different neurons [3,4,5%,6]. From the computational side,
the nerwork activity representing a memorized item
should exhibit a sufficient degree of stability to ensure
memory retainment. This requirement is especially chal-
lenging for storing continuous variables, such as orien-
tation or spatial position of a visual cue, because of an
inevitable drift along the variable's representation.
Furthermore, integrating the various data-driven chal-
lenges in a self-consistent manner is often a non-trivial
computational problem.



Reference: Omri Barak, Misha Tsodyks (2014) Working models of working memory, Current Opinion
in Neurobiology, 25: 20-24.

Membrane conductances (ion channels) generate fluctuations
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Figures 1 and 2 of Sigworth and Neher (1980). Reference: Sigworth, F. J., & Neher, E. (1980). Single
Na+ channel currents observed in cultured rat muscle cells. Nature, 287: 447-449.

Synapses generate even more fluctuations
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https://doi.org/10.1016/j.conb.2013.10.008

Figure 1 of Pouzat and Marty (1998).

Reference: Pouzat, C., & Marty, A. (1998). Autaptic inhibitory currents recorded from interneurones
in rat cerebellar slices. The Journal of Physiology, 509(Pt 3), 777.

2 Definition of the model
Definition

e The system consists in a finite set of NV identical neurons.

e Each neuron is synaptically connected to all the others.

e Each neuron ¢ € {1,... N} is associated with a membrane potential denoted (U;(t)):>0, taking
value in N.

e There is a threshold # € N. If U;(¢) < 6 neuron 4 cannot spike, while if U;(t) > 6 it spikes at rate
B.

e When a neuron spikes its membrane potential is reset to zero. That’s the only way the membrane
potential can decrease.

e Each neuron ¢ has a facilitation state evolving with ¢, we denote it (F;(t));>0 and it takes value in

{0,1}.

e If F;(t) = 1 and a spike occurs at time ¢ for neuron ¢, then the membrane potential of every neuron
is incremented by 1.

o If F;(t) = 0 the spike has no post-synaptic effect.

e The facilitation state of a given neuron is set to 1 immediately after a spike has been emitted by
this neuron, then the facilitation is lost at rate A.

e We are here modelling the sub-network of strongly interconnected pyramidal cells with facilitating
synapses described by Wang et al (2006) in the prefrontal cortex.

11



In picture
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Simulation with N =50, § =10, A = 6.7 and § = 5 between time 1 and 2.
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Zoom between time 1.20 and 1.25.
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3 Empirical results

Simulations outline ) . .
Simulations are easily performed since the “global” network rate is constant between two successive
events (spike or facilitation loss). Our C code writes to disk:

# Simulation of a networks with 50 neurons

# Xoroshiro128+ PRNG seeds set at 18710305 and 1857075

# The initial max membrane potential was set to 50

# The initial probability for a synapse to be active was set to 0.750000

# Parameter theta = 5.000000

# Parameter beta = 10.000000

# Parameter lambda = 6.700000

# Simulation duration = 50.000000

# Spike time Total mb of spikes Neuron of origin Neurons >= theta N synapse active f=1 at spike
0.0018467869 1 28 45 38 1
0.0051172237 2 49 44 39 0
0.0078398923 3 41 44 37 1
0.0132602453 4 47 43 35 1
0. 5 16 44 35 1

0140281557

Tiny network example

e T
- . o
. . .
.
P B
. e

Raster plots of 50 neurons network, with A\ = 6.7, 8 = 10 and § = 5. The initial probability for the
synapses to be active was 0.75, the initial membrane potentials were drawn uniformly on {0,1,...,49}.
Left, from time 0 to 14; right from time 12 to 14.

13



Same network different seed
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The scale bar is drawn between time 10 and time 15.
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The counting process representation
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C' T i i | i i
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The two previous simulations, the first in black, the second in red.

Increasing A\
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Observed counting processes of a network made of 50 neurons with increasing values of A from 1 to 9.
In black, “top to bottom”, A € {1,2,...,6}; in red, A > 6.

Survival time distribution

107 -

Fraction still alive

10-1 -

0 100 200 300 400 500
Survival time

Empirical survival functions obtained from 1000 replicates with # = 5, A = 6.7 (red and blue), A = 7
(black) and A = 6 (orange), 8 = 10 and a network with 50 neurons. The initial probability for the
synapses to be active was 0.75, the initial membrane potentials were drawn uniformly on {0,1,...,49}.
All simulations start from the same random initial state except the red and blue ones. A log scale is
used for the ordinate.

Survival time when ) is “too” large

loﬂ -

Fraction still alive

lO—] _|

-

0 1 2 3 4 5
Survival time

Same as before with A = 7 (black) and A = 8,...,18 (grey).
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Survival time vs A\

102 -

= n

5 :
fr
J
c
=
o

1-

o 10°°

- -]
Q
=
=
c

o 10°-

= .

1071 -
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95 % CI of the mean time to extinction as a function of A. From 1000 simulations for each A and 3 = 10
and a network with 50 neurons. A log scale is used for the ordinate.

Survival time vs Network size
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10 -

Mean time to extinction

101 -

107 -

40 60 80 100 120
Network size

95 % CI of the mean time to extinction as a function of N. From 100 simulations, for each N: A = 7,
8 =10 and # = N/10. A log scale is used for the ordinate.
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4 Mean-field analysis

What can we do, what do we want?

We cannot yet prove that the metastable state exists.

We will therefore postulate that it does: that’s what the simulations show.

We will use the intrinsic symmetry of the model: the neurons are all equivalent.
We will try to get network properties in the metastable state:

— network firing rate
— number of neurons in each state

— number of facilitated synapses

from the 4 network parameters: N, 6, 3, A.

Notations and remarks

We have (U;(t)):>0 € N, but from the network dynamics what matters is to know whether U;(t) > 6
or not.

We then have to consider 6 + 1 different states for U;(t): {0,1,...,0 —1,> 0}, that is, 0 states
below threshold and 1 state above.

Let us write

— N;(t) for i € {0,1,...,0 — 1} the number of neurons whose membrane potential equals i

— Np(t) the number of neurons whose membrane potential is > 6
at time ¢.
We obviously have: Zf:o N;(t) = N at all times.

Then under our assumption of quasi-stationarity, the expectations of the N; should be almost con-
stant in the metastable phase.

Thus we let ug, i1, . . . 1o be the constants such that E(Ny(t)) =~ po, ..., E(Ng(t)) ~ g, where ¢
is any time before the extinction of the system.

Another key quantity

If we manage to compute 119, we know the approximate network rate at anytime (before extinction):
UN = pof.

In our model, when neuron j spikes at time s we have F;(s+) = 1, the question is:
if the next spike of j happens at time s+ 7, do we still have F;(s+ 1) =17
By our model definition and our quasi-stationarity assumption we have: E [Fj(s + 7)|7] = e 7.
We introduce now our second “key” quantity:
pp =E(e7),

where the expectation is taken with respect to the unknown distribution of the conditioning rv T
whose realization is 7.

pE is the “mean probability” that the synapse is still facilitated when the neuron spikes.

18



Circulation among U states

e Remark that pg allows us to define the rate of “effective” spikes (spikes that have a post-synaptic
effect): pgfSug.

e Stationarity means that the rate at which neurons leave membrane potential state i € {0,1,...,0—
1,> 0} must equal the rate at which neurons enter that state.

e Fori e {1,...,0 — 1} this translates into:

(moBue)pwi = (HoBpe)pi-1,

that is:
Bo=p1 ="+ = lo—1-

e For the two extrem states, we have:

(HoBrE) o = 1o,

leading to
to =1/pg .

e But we have:

0—1
ZM‘ +pe =N.
i=0

e Using the equality of the u; for i < 6 and our last equality (uo = 1/pug), yields:

0
po=N— —.
HE

e We see that is pup increases, so does pg and therefore vy = pgf3, the network spike rate.

e We can also obtain a new expression for the rate of “effective” spikes:

;me—(N9>mm—ﬂmENm.
HE

Getting an implicit equation for ug

e In the metastable state, a neuron leaves a membrane potential state below threshold at rate:
BlpueN —0).

e That neuron must go through a succession of 6 states to reach threshold, the distribution of the
time to reach threshold is therefore an Erlang distribution with parameters § and S(ugN — 6) and
its mean value is:

v
B(ueN —0) "

e Once threshold has been reach, the rate at which a spike is generated is 8 so the interval between
two successive spikes of a given neuron is approximately

0
Tw—" 4y,
B(ueN —0)

where Y is an exponential random variable with rate parameter 3.

19



Remember that pug = E [exp(—AT)].

‘We therefore have:

o 0
e o0 | Mgy )| Few

hE ~ [eXp (—M\]g_e)ﬂ /Oooﬁexp(—(wrﬁ)y) dy .

that is

Leading to:

~ B (_M)
PEENFB TP\ BlusN —0) )

This is an implicit equation we must solve for ug.

Remarks

e We can do better than that and work with the distribution of the Erlang random variable—giving
the time spent below threshold—instead of the mean of the latter as we just did.

e This requires a numerical integration whose precision we can check.
e Looking at:

~ P (_M)
PN BT BN =)

we see that the right hand side is a decreasing function of A, so if A is too large the equation could
have no solution implying that there is no metastable state as we saw in the simulations.

Graphical solution of the implicit equation

0.6 -

o
un
i

e
S
i

=
w
i

Prob. of active synapse upon spike

0.3 0.4 0.5 0.6
Prob. of active synapse upon spike

o
,_.
(=]
)

'ﬁ\\

Examples with N =50, § =5, 3 =10, A = 6,6.7,7,8,9,10,11,12 (top to bottom). Dashed blue lines
are obtained in two cases by “numerical integration”.
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Comparison between mean-field solution and simulations
The implicit equation solution gives:

With N=500, beta=10.0, lambda=6.0, ceil_theta=50 we get:

[...]

nu_E = 4085.11 (network spiking rate),

mu_theta = 408.51 (mean nb of neurons at or above threshold),
mu_A = 308.76 (mean nb of active synapses),

mu_E = 0.547 (prob of active synapse upon spike).

One numerical simulation gives:

Dealing with sim_n500_u50_£fOp75_b10_16_siml_neuron:
[...]

***x Network level statistics ¥k

Ignoring 10 time unit(s) at both ends we get:

nu_E = 4079.86 [4069,4091] (empirical network spiking rate and 95, CI)
mu_theta = 408.18 (empirical mean nb of neurons at or above threshold)
mu_A = 309.31 (empirical mean nb of active synapses)

mu_E = 0.547 (fraction of active synapse upon spike).

5 Conclusion and perspectives
Conclusion and perspectives

e The serious work just begins: we must prove the existence of the metastable sate.

e The potential tuning of short-term facilitation (changing our \) does not seem to have been studied
by experimentalists; so we will try to convince some of doing so.

e The exponential loss of memory in delayed response paradigms implied by our metastable state
hypothesis could be tested with psychological experiments on humans.

Thank you all for listening!

The End
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