
Reproducible Research: What is it? Why
should we do it? How?

Christophe Pouzat
MAP5, Université de Paris et CNRS

christophe.pouzat@parisdescartes.fr

IDEEV, Gif/Orsay, November 15 2019

What is "Reproducible Research"?

I A short explanation: this is an approach aiming at
reducing the gap between an ideal—research results
should be reproducible—and reality—it is often hard,
even for the authors, to reproduce published results—.

I In pratice it consists in providing to articles and books
readers the complete set of data and codes together with
an algorithmic description of how the codes were applied
to the data to obtain the results.

At that stage, usually, two questions are asked:

I Why should I bother making my work reproducible if no
one asks for it?

I Great, but how should I do it?

Some remarks

I In practice, what is meant by "reproducibility" here is
what comes after data collection—it would indeed be
more appropriate to speak about reproducible data
analysis—.

I But "reproducible research" as we just defined it requires
"free access" to data; the latter become therefore open to
criticism and comparable: that’s a big step towards data
reproducibility per se.

The Journal of Money, Credit and Banking

I In the early 80s the editors of the Journal of Money,
Credit and Banking started requesting from their authors
the codes and data used for the "empirical papers" as well
as the agreement to give access to those upon request (a
project supported by the National Science Foundation).

I In 1986 a paper was published reporting a systematic
attempt to reproduce the 54 empirical papers published
between 1982 and 1984 (Dewald, Thursby and Anderson,
1986, The American Economic Review 76: 587-603). . .
only 2 could be reproduced.

I Another systematic study of the 62 papers published
between 1996 and 2003 (McCullough, McGeary and
Harrison, 2006, JMCB 38: 1093-1107) found 14 of them
reproducible.

Shortcomings of this approach

I Data and code handing-in was essentially dependent of
the authors’ good will.

I Neither a precise data format nor a data description was
requested from the authors.

I No code description was requested—but anyone who
programs knows that most undocumented codes are
impenetrable, even by their own authors, after 2 to 6
months—.

I No description of the way the codes were applied to the
data was requested.

Public debt and (economy) growth rate

I More recently economists made headlines (of reproducible
research) with a controversy on the link between public
debt and growth rate (Reinhart et Rogoff 2010, AER 100:
573–78) ;

I Herndon, Ash and Pollin later argued that the original
paper was dubious: "While using RR’s working
spreadsheet, we identified coding errors, selective
exclusion of available data, and unconventional weighting
of summary statistics" (2014, Cambridge Journal of
Economics 38: 257–279).

I We should nevertheless credit Reinhart and Rogoff for
making their codes and data (Excel spreadsheets!)
available.

https://dx.doi.org/10.1257/aer.100.2.573
https://dx.doi.org/10.1257/aer.100.2.573

The Stanford Exploration Project
In 1992, Jon Claerbout et Martin Karrenbach in a
communication at the Society of Exploration Geophysics
wrote:

A revolution in education and technology transfer fol-
lows from the marriage of word processing and soft-
ware command scripts. In this marriage an author
attaches to every figure caption a pushbutton or a
name tag usable to recalculate the figure from all its
data, parameters, and programs. This provides a con-
crete definition of reproducibility in computationally
oriented research. Experience at the Stanford Explo-
ration Project shows that preparing such electronic
documents is little effort beyond our customary re-
port writing; mainly, we need to file everything in a
systematic way.

http://sepwww.stanford.edu/doku.php?id=sep:research:reproducible:seg92

The key features of Claerbout and Karrenbach idea was later
reformulated by Buckheit and Donoho (1995) who wrote:

An article about computational science in a scientific
publication is not the scholarship itself, it is merely
advertising of the scholarship. The actual scholar-
ship is the complete software development environ-
ment and the complete set of instructions which gen-
erated the figures.

http://statweb.stanford.edu/~wavelab/Wavelab_850/wavelab.pdf

Stanford Exploration Project tools

SEP geophysicists analyse large data sets and make "complex"
simulations of geophysical models (PDE based); they are
therefore:

I used to compiled languages like ratfor (a fortran
dialect) and C,

I using build automation with Cake derived from Make,
I writing their papers with TEX and LATEX .

Their key idea was to use build automation not only for binary
generation but also for applying the codes to the
data—generating thereby the paper’s figures and
tables—before compiling the .tex file.

https://en.wikipedia.org/wiki/Ratfor
https://en.wikipedia.org/wiki/Build_automation
https://fr.wikipedia.org/wiki/GNU_Make

The SEP has since then developed Madagascar, a powerful and
"versatile" tool, directed towards geophysics, built on top of
the build-automation utility SCons –a Python based software–.

http://www.ahay.org/wiki/Main_Page
http://www.ahay.org/wiki/Reproducible_computational_experiments_using_SCons

Strong and weak features

Strong features:

I Everything (data, source codes, scripts, text) is kept in a
directory arborisation making the whole work easy to
archive and to distribute.

I A marked emphasis on open-source software was present
right at the beginning.

Weak features:

I TEX (or LATEX) is not super practical for "note taking"
and is a real obstacle outside of maths and physics
communities.

I The whole approach is perhaps too "heavy" for daily
exploratory data analysis.

Personal assessment of build-automation based RR

I If your work leads you to develop "a lot" of compiled
code your are already implementing build-automation.

I Including paper generation (.tex file compilation) in the
process is no big deal.

I This is what I use, together with a standardised language
(like C, C++, Fortran), when I want things to last!

I If you’re happy with Python or the JVM (with Clojure)
check the d’ActivePapers concept, you won’t have to deal
explicitly with build-automation or directory arborisation.

http://www.activepapers.org/

A detour through Literate Programming

When Donald Knuth received in 1976 the proofs of the second
volume of his opus magnum (The Art of Computer
Programming), he was horrified by their appalling typographic
quality; this lead him to:

1. develop TEX a typesetting system;
2. introduce the idea of literate programming and to develop

WEB, the software making this idea usable.

https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/Typesetting
https://en.wikipedia.org/wiki/Literate_programming

With literate programming, the code and its documentation
are intermingled—in order to make the code easily
understandable by a human being, as opposed to a
compiler—in a single ASCII (now UTF-8) file. Two outputs
can be generated:

I a .tex file containing the "classical" printable code
documentation → Weave ;

I a source file in C (originally in Pascal, but that can be in
any language) that will be compiled into a binary →
Tangle.

Literate programming explained by D Knuth

I believe that the time is ripe for significantly bet-
ter documentation of programs, and that we can best
achieve this by considering programs to be works of
literature. Hence, my title: "Literate Programming".
Let us change our traditional attitude to the construc-
tion of programs: Instead of imagining that our main
task is to instruct a computer what to do, let us con-
centrate rather on explaining to human beings what
we want a computer to do.

The practitioner of literate programming can be re-
garded as an essayist, whose main concern is with
exposition and excellence of style. Such an author,
with thesaurus in hand, chooses the names of vari-
ables carefully and explains what each variable means.
He or she strives for a program that is comprehensible
because its concepts have been introduced in an order
that is best for human understanding, using a mixture
of formal and informal methods that reınforce each
other.

— Donald Knuth, Literate Programming.

http://www.literateprogramming.com/knuthweb.pdf

Diverting literate programing: R and the Sweave
function

R is a langage / software under a GPL licence, described as
follows on the FAQ page:

R is a system for statistical computation and graphics.
It consists of a language plus a run-time environment
with graphics, a debugger, access to certain system
functions, and the ability to run programs stored in
script files.

For programmers, R stems from scheme with a C like syntax:
I we write 2+2 ;
I not (+ 2 2).

http://cran.r-project.org/doc/FAQ/R-FAQ.html#What-is-R_003f
http://fr.wikipedia.org/wiki/Scheme

Sweave

I Sweave is an R function.
I Sweave processes text files mixing "prose" typeset with

LATEX or HTML with R code.
I Sweave copies verbatim the prose part of the file into a

new file, runs the code and adds the results (tables,
figures) in this new (.tex or .html) file.

I Sweave files syntax is close to the one of noweb files, the
modern version of Knuth’s web.

With Sweave we "replace" the figures and tables of a
manuscript by the code that generates them.

http://www.statistik.lmu.de/~leisch/Sweave/
http://www.cs.tufts.edu/~nr/noweb/

Example

A part of a Sweave file looks like:

\subsection{Data summary}
The \textit{five number summary} of data set
a is:
<<summary-a>>=
summary(a)
@
We see that \textbf{saturation is absent}...

The true link between Sweave and literate programming is the
common syntax bracketing code blocks in the source file:

I a block starts with «block-name»= ;
I and ends with @.

Shortcomings

I You must know R and LATEX (or HTML).
I For me LATEX is great to write papers and tutorials, but it

is a bit too heavy for my lab-book.
I Changing from one output format (PDF) to another

(HTML) requires extra tools like TeX4ht.
I True literate programming in Knuth’s sense cannot be

implemented—you can describe how code is applied to
data but you can’t develop code per se—.

http://tug.org/applications/tex4ht/mn.html

Recent developments: lightweight markup
languages

A major drawback of previous approaches, the necessity to
write the "prose part" in LATEX or HTML, has now disappeared
with the development of lightweight markup languages like:

I Markdown
I reStructuredText
I Asciidoc
I Org mode (with which this talk was prepared).

https://en.wikipedia.org/wiki/Lightweight_markup_language
http://daringfireball.net/projects/markdown/
http://docutils.sourceforge.net/rst.html
http://asciidoc.org/
http://orgmode.org/fr/index.html

With pandoc, developed by John MacFarlane (a philosopher),
it is moreover easy to translate one of these languages into the
others; with the pandoc extension of Markdown a beginner
with one hour of practice can generate a LATEX file bluffing an
expert.

I For R users, Markdown syntax can be used:
I with the RMarkdown package
I or, even simpler, with RStudio.

I Python users have:
I Pweave,
I or jupyter notebooks.

http://johnmacfarlane.net/pandoc/
http://enacit1.epfl.ch/markdown-pandoc/
http://rmarkdown.rstudio.com/
https://www.rstudio.com/
http://mpastell.com/pweave/
https://jupyter.org/

Example (R Markdown version)

The former example with R Markdown becomes:

Data summary
The _5 number summary_ of data set a is:
```{r summary-a}
summary(a)
```
We see that __saturation is absent__...

For comparison, the previous version (with Sweave) :

\subsection{Data summary}
The \textit{five number summary} of data set
a is:
<<summary-a>>=
summary(a)
@
We see that \textbf{saturation is absent}...

A quick comparison

The following tools allow anyone already familiar with R,
Python or Julia, to be quickly productive for exploratory or
interactive data analysis:
I With jupyter notebooks these three languages can be

used separately, but there is no real editor in jupyter, a
major drawback in my opinion.

I RMarkdown with RStudio provides a straightforward
access to reproducible research with R and (a little bit)
with Python; the editor is also reasonably good.

I SageMath based on Python 2, with R, Maxima and
roughly 100 scientific libraries "under the hood" is
probably the most comprehensive solution to date, but
the development stopped.

https://jupyter.org/
http://rmarkdown.rstudio.com/
https://www.rstudio.com/
http://www.sagemath.org/
http://maxima.sourceforge.net/

A drawback: all these tools are "script oriented" and not really
designed for code development (even without going as far as
literate programming).

The mode Org of the editor GNU emacs combines the benefits
of SageMath with the capability to implement genuine literate
programming; its only drawback: you must learn emacs. . .

http://orgmode.org/fr/index.html
https://www.gnu.org/software/emacs/

Version control

Keeping in line with the diversion of software development
tools approach, reproducible research practitioners become
often dependent on version control software:

I git is de facto becoming the standard tool;
I with github and gitlab, even beginners can use it.

https://en.wikipedia.org/wiki/Version_control
https://git-scm.com/
https://github.com/
https://about.gitlab.com/

Large data sets

When we start working on "real" data we often have to face
two problems:

I The data are inhomogeneous (scalar, vectors, images,
etc).

I The data require a lot of memory.

What we want to keep from text files: metadata

I Text format allows us to easily store data plus a lot of
extra information. . .

I ⇒ we can add to the file:
I where the data come from;
I when were they recorded;
I what is their source;
I etc.

I These information on the data are what is called
metadata.

I They are essential for (reproducible) research.

Binary formats for heterogeneous data with
metadata

What we need is binary formats allowing us to:

I work with large heterogeneous data;
I keep metadata with the data;
I fix the endianness once and for all.

https://en.wikipedia.org/wiki/Endianness

FITS and HDF5

I The Flexible Image Transport System (FITS), created in
1981 is still maintained and regularly updated.

I The Hierarchical Data Format (HDF), developed by the
National Center for Supercomputing Applications,
reached its fifth version, HDF5.

Data repository

A scientist working with experimental data (as opposed to
simulations) will most likely sooner or later face a problem
when implementing reproducible research: how can large data
sets become easily accessible by anyone? Luckily many public
(and free) data repository appeared these last years:

I RunMyCode
I Zenodo (that’s the one I’m using)
I The Open Science Framework
I Figshare
I DRYAD
I Exec&Share.

http://www.runmycode.org
https://zenodo.org
https://osf.io
http://figshare.com
http://datadryad.org/
http://www.execandshare.org

A "real size" example

If there is enough time, we will discuss the "supplementary
material" of the manuscript A system of interacting neurons
with short term plasticity. The former can be downloaded
from:

https://plmlab.math.cnrs.fr/xtof/interacting_
neurons_with_stp

https://plmlab.math.cnrs.fr/xtof/interacting_neurons_with_stp
https://plmlab.math.cnrs.fr/xtof/interacting_neurons_with_stp

Some references

I The Mooc "Reproducible research: Methodological
principles for a transparent science"!

I Implementing Reproducible Research, a book edited by V
Stodden, F Leisch and R Peng, that can be legally
downloaded on the web ; it also discusses thoroughly
workflows (a popular approach in Biology).

I The Reproducibility page of the Madagascar website.
I The ReScience journal whose aim is to publish

replications of computational papers.
I Top 10 Reasons to Not Share Your Code (and why you

should anyway) a great talk by Randy LeVeque, both fun
and deep.

https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/
https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/
https://osf.io/s9tya/
http://www.ahay.org/wiki/Reproducibility
http://rescience.github.io/
http://faculty.washington.edu/rjl/talks/LeVeque_CSE2011.pdf
http://faculty.washington.edu/rjl/talks/LeVeque_CSE2011.pdf

Conclusions

I Regardless of the type of work you have to do—large
code development or "tailored scripts"—there are now
tools allowing you to smoothly implement the
reproducible research paradigm.

I We will now have to start a more "political" struggle so
that this approach gets the recognition it deserves (in my
view), for that we will need:
I a change in editorial policies;
I a request for reproducible research implementation from

the funding agencies;
I to make it count when research activity is evaluated.

Thanks

I want to thank:

I the IDEEV for this invitation;
I my employer, the CNRS, for letting spending a lot of time

making my work reproducible even if no one is asking for
it;

I the developers of the free software mentioned in that talk;
I you for listening to me.

	Introduction
	A short History
	Going farther

