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Multi-Electrodes In Vivo Recordings in Insects

“From the outside” the neuronal activity appears as brief
electrical impulses: the action potentials or spikes.

Left, the brain and the recording probe with 16 electrodes
(bright spots). Width of one probe shank: 80 µm. Right, 1
sec of raw data from 4 electrodes. The local extrema are the
action potentials.
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More info on the experimental setting

I The brain shown on the figure belongs to a locust
(Schistocerca americana).

I The part of the brain close to the recording probe is the
antennal lobe, the first olfactory relay in the insect
brain.

I It’s diameter is ∼ 400µm.

I The thickness of the probe’s shanks is 10-15 µm. The
electrodes are squares of 13 x 13 µm2. The center of
one tetrode is separated by 150 µm from its two nearest
neighbors.

I The recording shown on the right hand side of the figure
comes from the lowest right tetrode which was located
approximately 100 µm bellow the antennal lobe surface.
The data were filtered between 300 Hz and 5 kHz.
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Spike trains

After the rather heavy spike sorting pre-processing stage
spike trains are obtained.
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Studying spike trains per se

I A central working hypothesis of systems neuroscience is
that action potential or spike occurrence times, as
opposed to spike waveforms, are the sole information
carrier between brain regions [Adrian and Zotterman,
1926a, Adrian and Zotterman, 1926b].

I This hypothesis legitimates and leads to the study of
spike trains per se.

I It also encourages the development of models whose
goal is to predict the probability of occurrence of a spike
at a given time, without necessarily considering the
biophysical spike generation mechanisms.
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Spike trains are not Poisson processes

The “raw data” of one bursty neuron of the cockroach
antennal lobe. 1 minute of spontaneous activity.
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Homogenous Poisson Process
A homogenous Poisson process (HPP) has the following
properties:

1. The process is homogenous (or stationary), that is, the
probability of observing n events in (t, t + ∆t) depends
only on ∆t and not on t. If N is the random variable
describing the number of events observed during ∆t, we
have:

Prob{N = n} = pn(∆t)

2. The process is orderly, that is:

lim
∆t→0

Prob{N > 1}
Prob{N = 1}

= 0

There is at most one event at a time.
3. The process is without memory, that is, if Ti is the

random variable corresponding to the interval between
events i and i + 1 then:

Prob{Ti > t + s | Ti > s} = Prob{Ti > t}, ∀i .
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HPP properties

We can show [Pelat, 1996] that a HPP has the following
properties:

I There exists a ν > 0 such that:

p(Ti = t) = ν exp(−νt), t ≥ 0,

where p(Ti = t) stands for the probability density
function (pdf) of Ti .

I The number n of events observed in an interval
(t, t + ∆t) is the realization of a Poisson distribution of
parameter ν∆t:

Prob{N = n in (t, t + ∆t)} =
(ν∆t)n

n!
exp(−ν∆t)
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Spike trains are not Poisson processes (again)

Density estimate (gray) and Poisson process fit (red) for the
inter spike intervals (ISIs) of the previous train. The largest
ISI was 3.8 s.
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Renewal Processes

When a Poisson process does not apply, the next “simplest”
process we can consider is the renewal process [Perkel et al,
1967] which can be defined as:

I The ISIs of a renewal process are identically and
independently distributed (IID).

I This type of process is used to describe occurrence times
of failures in“machines” like light bulbs, hard drives, etc.
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Spike trains are rarely renewal processes

Some “renewal tests” applied to the previous data.
See [Pouzat and Chaffiol, 2009a] for details.
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A counting process formalism (1)

Probabilists and Statisticians working on series of events
whose only (or most prominent) feature is there occurrence
time (car accidents, earthquakes) use a formalism based on
the following three quantities [Brillinger, 1988].

I Counting Process: For points {tj} randomly scattered
along a line, the counting process N(t) gives the
number of points observed in the interval (0, t]:

N(t) = ]{tj with 0 < tj ≤ t}

where ] stands for the cardinality (number of elements)
of a set.
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A counting process formalism (2)

I History: The history, Ht , consists of the variates
determined up to and including time t that are
necessary to describe the evolution of the counting
process.

I Conditional Intensity: For the process N and history Ht ,
the conditional intensity at time t is defined as:

λ(t | Ht) = lim
h↓0

Prob{event ∈ (t, t + h] | Ht}
h

for small h one has the interpretation:

Prob{event ∈ (t, t + h] | Ht} ≈ λ(t | Ht) h
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Meaning of ”spike train analysis” in this talk

In this talk “spike train analysis” can be narrowly identified
with conditional intensity estimation:

spike train analysis ≡ get λ̂(t | Ht)

where λ̂ stands for an estimate of λ.
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Goodness of fit tests for counting processes

I All goodness of fit tests derive from a mapping or a
“time transformation” of the observed process
realization.

I Namely one introduces the integrated conditional
intensity :

Λ(t) =

∫ t

0
λ(u | Hu) du

I If Λ is correct it is not hard to show [Brown et al,
2002, Pouzat and Chaffiol, 2009b] that the process
defined by :

{t1, . . . , tn} 7→ {Λ(t1), . . . ,Λ(tn)}

is a Poisson process with rate 1.
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Time transformation illustrated

An illustration with simulated data. See [Pouzat and
Chaffiol, 2009b] for details.
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Ogata’s tests (1)

Y Ogata [Ogata, 1988] introduced several procedures testing
the time transformed event sequence against the uniform
Poisson hypothesis:

I If a homogeneous Poisson process with rate 1 is
observed until its nth event, then the event times,
{Λ(ti )}ni=1, have a uniform distribution on
(0,Λ(tn)) [Cox and Lewis, 1966]. This uniformity can
be tested with a Kolmogorov test.
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Ogata’s test (1.5)
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Ogata’s tests on the simulated data.
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Ogata’s tests (2)

I The uk defined, for k > 1, by:

uk = 1− exp (− (Λ(tk)− Λ(tk−1)))

should be IID with a uniform distribution on (0, 1). The
empirical cumulative distribution function (ECDF) of
the sorted {uk} can be compared to the ECDF of the
null hypothesis with a Kolmogorov test. This test is
attributed to Berman in [Ogata, 1988] and is the test
proposed and used by [Brown et al, 2002].
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Ogata’s test (2.5)
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Ogata’s tests (3)

I A plot of uk+1 vs uk exhibiting a pattern would be
inconsistent with the homogeneous Poisson process
hypothesis. A shortcoming of this test is that it is only
graphical and that it requires a fair number of events to
be meaningful.
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Ogata’s test (3.5)
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Ogata’s tests (4)

I The last test is obtained by splitting the transformed
time axis into Kw non-overlapping windows of the same
size w , counting the number of events in each window
and getting a mean count Nw and a variance Vw

computed over the Kw windows.

Using a set of
increasing window sizes: {w1, . . . ,wL} a graph of Vw as
a function of Nw is build. If the Poisson process with
rate 1 hypothesis is correct the result should fall on a
straight line going through the origin with a unit slope.
Pointwise confidence intervals can be obtained using the
normal approximation of a Poisson distribution.
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Ogata’s test (4.5)
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A new test based on Donsker’s theorem

I We propose an additional test built as follows :

Xj = Λ(tj+1)− Λ(tj)− 1
Sm =

∑m
j=1 Xj

Wn(t) = Sbntc/
√

n

I Donsker’s theorem [Billingsley, 1999, Durrett, 2009]
implies that if Λ is correct then Wn converges weakly to
a standard Wiener process.

I We therefore test if the observed Wn is within the tight
confidence bands obtained by [Kendall et al, 2007] for
standard Wiener processes.
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Illustration of the proposed test

The proposed test applied to the simulated data. The
boundaries have the form: f (x ; a, b) = a + b

√
x .
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Where Are We?

I We are now in the fairly unusual situation (from the
neuroscientist’s viewpoint) of knowing how to show that
the model we entertain is wrong without having an
explicit expression for this model...

I We now need a way to find candidates for the CI:
λ(t | Ht).
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What Do We “Put” in Ht?

I It is common to summarize the stationary discharge of a
neuron by its inter-spike interval (ISI) histogram.

I If the latter histogram is not a pure decreasing
mono-exponential, that implies that λ(t | Ht) will at
least depend on the elapsed time since the last spike:
t − tl .

I For the real data we saw previously we also expect at
least a dependence on the length of the previous inter
spike interval, isi1. We would then have:

λ(t | Ht) = λ(t − tl , isi1)
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What About The Functional Form?

I We haven’t even started yet and we are already
considering a function of at least 2 variables: t − tl , isi1.
What about its functional form?

I Following Brillinger [Brillinger, 1988] we discretize our
time axis into bins of size h small enough to have at
most 1 spike per bin.

I We are therefore lead to a binomial regression problem.

I For analytical and computational convenience we are
going to use the logistic transform:

log
( λ(t − tl , isi1) h

1− λ(t − tl , isi1) h

)
= η(t − tl , isi1)
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The Discretized Data

event time neuron lN.1 i1
14604 0 58.412 1 0.012 0.016
14605 1 58.416 1 0.016 0.016
14606 0 58.420 1 0.004 0.016
14607 1 58.424 1 0.008 0.016
14608 0 58.428 1 0.004 0.008
14609 0 58.432 1 0.008 0.008
14610 1 58.436 1 0.012 0.008
14611 0 58.440 1 0.004 0.012

event is the discretized spike train, time is the bin center
time, neuron is the neuron to whom the spikes in event
belong, lN.1 is t − tl and i1 is isi1.
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Smoothing spline (0)

I Since cellular biophysics does not provide much
guidance on how to build η(t − tl , isi1) we have chosen
to use the nonparametric smoothing spline [Wahba,
1990, Green and Silverman, 1994, Eubank, 1999, Gu,
2002] approach implemented in the gss (general
smoothing spline) package of Chong Gu for the open
source software R.

I η(t − tl , isi1) is then uniquely decomposed as :

η(t− tl , isi1) = η∅+ηl(tt − l) +η1(isi1) +ηl ,1(t− tl , isi1)

I Where for instance: ∫
η1(u)du = 0

the integral being evaluated on the definition domain of
the variable isi1.

http://www.stat.purdue.edu/~chong/
http://www.r-project.org
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Smoothing spline (1)

Given data:

Yi = η(xi ) + εi , i = 1, . . . , n

where xi ∈ [0, 1] and εi ∼ N(0, σ2), we want to find ηρ
minimizing:

1

n

n∑
i=1

(Yi − ηρ(xi ))2 + ρ

∫ 1

0

(d2ηρ
dx2

)2
dx
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Smoothing spline (2)
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Smoothing spline (3)

It can be shown [Wahba, 1990] that, for a given ρ, the
solution of the functional minimization problem can be
expressed on a finite basis:

ηρ(x) =
m−1∑
ν=0

dν φν(x) +
n∑

i=1

ci R1(xi , x)

where the functions, φν(), and R1(xi , ), are known.
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Smoothing spline (4)
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Smoothing spline (5): What about ρ?
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Smoothing spline (6): Cross-validation

Ideally we would like ρ such that:

1

n

n∑
i=1

(ηρ(xi )− η(xi ))2

is minimized... but we don’t know the true η. So we choose
ρ minimizing:

V0(ρ) =
1

n

n∑
i=1

(η[i ]
ρ (xi )− Yi )

2

where η
[k]
ρ is the minimizer of the “delete-one” functional:

1

n

∑
i 6=k

(Yi − ηρ(xi ))2 + ρ

∫ 1

0

(d2ηρ
dx2

)2
dx
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Smoothing spline (7)
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Smoothing spline (8)
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Smoothing spline (9): The theory (worked out by
Grace Wahba) also gives us confidence bands
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Going back to the real train

I On the next slide the actual spike train you saw
previously will be shown again.

I Three other trains will be shown with it. The second
half (t ≥ 29.5) of each of these trains has been
simulated.

I The simulation was performed using the same model
obtained by fitting the first half of the data set.
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Going back to the real train

I On the next slide the actual spike train you saw
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Going back to the real train

I On the next slide the actual spike train you saw
previously will be shown again.

I Three other trains will be shown with it. The second
half (t ≥ 29.5) of each of these trains has been
simulated.

I The simulation was performed using the same model
obtained by fitting the first half of the data set.



Spike Train
Analysis

Pouzat

Introduction

“Qualitative”
Analysis

Counting Process

Goodness of Fit

CI

Smoothing Spline

Back to Real Data

Conclusions and
Acknowledgments

Bibliography

Which one is the actual train?
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Which one is the actual train? Answer.

The actual train can is in the lower right corner of the
previous slide.
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Towards the candidate model (1)

I We said previously that we would start with a 2
variables model:

η(t− tl , isi1) = η∅+ηl(tt − l) +η1(isi1) +ηl ,1(t− tl , isi1)

I Since we are using non-parametric method we should
not apply our tests to the data used to fit the model.
Otherwise our P-values will be wrong.

I We therefore systematically split the data set in two
parts, fit the same (structural) model to each part and
test it on the other part.
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An Important Detail (1)

The distributions of our variables, t − tl and isi1 are very
non-uniform:
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For reasons we do not fully understand yet, fits are much
better if we map our variables onto uniform ones.
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An Important Detail (2)

We therefore map our variables using a smooth version of
the ECDF estimated from the first half of the data set.
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These mapped variables ECDFs are obtained from the whole
data set.
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Towards the candidate model (2)

I We are going to actually fit 2 models to our data set:
I Model 1:

η(t− tl , isi1) = η∅ + ηl(tt − l) + η1(isi1) + ηl,1(t− tl , isi1)

I Model 2:

η(t − tl , isi1) = η∅ + ηl(tt − l) + η1(isi1)

Model 2 is called an additive model in the literature.

I Clearly Model 1 is more complex than Model 2
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Model 1 Fit Early Test Late
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Model 1 Fit Late Test Early
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Model 2 Fit Early Test Late and Fit Late Test
Early
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Towards the candidate model (3)

I We now have two candidate models passing our tests.
Which one should we choose?

I We could argue that since Model 2 is the simplest, we
should keep it.

I We could also use the probability (or its log) given by
each model to the data.

Let yi be the indicator of the
presence (yi = 1) or absence (yi = 0) of a spike in bin i .
Let p1,i and p2,i the probabilities of having a spike in
bin i given by model 1 and 2. Then,

Prob{Yi = yi | Model k} = pyi
k,i (1− pk,i )

1−yi

We can therefore attach a number (a probability) to our
binned spike train and we get for the log probability,
-918.517 with Model 1 and -925.393 with Model 2.

I These last two numbers are obtained with data (yi ) of
the second half and a model (pi ) fitted to the first half.
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Towards the candidate model (4)

I The simplicity argument would lead us to select Model
2 while the probability argument would lead us to select
Model 1.

I The question becomes: How much confidence can we
have is the difference of 7 found between the two log
probabilities?

I We address this question with a “parametric” bootstrap
approach [Davison and Hinkley, 1997].

I Assume Model k fitted to the first half is correct.
I Simulate 500 spike trains corresponding to the second

half using Ogata’s thinning method [Ogata, 1981].
I Compute the log probability with both models.
I Get some summary stats out of these simulations.
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Log Probs When Model 1 is True

Red lines correspond to observed values.
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Log Prob Difference When Model 1 is True

Red lines correspond to observed value. The mean value of
this difference, 4.78± 0.16, is an estimator of the
Kullback-Leibler divergence between Models 1 and 2.
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Log Probs When Model 2 is True

Red lines correspond to observed values.



Spike Train
Analysis

Pouzat

Introduction

“Qualitative”
Analysis

Counting Process

Goodness of Fit

CI

Smoothing Spline

Back to Real Data

Conclusions and
Acknowledgments

Bibliography

Log Prob Difference When Model 2 is True

Red lines correspond to observed value. The mean value of
this difference, 6.85± 0.22, is an estimator of the
Kullback-Leibler divergence between Models 2 and 1.
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Towards the candidate model (5)

I Our “parametric bootstrap” approach clearly rules out
Model 2 as a candidate model.

I We are therefore left with the model including
interactions between its two variables, Model 1:

η(t− tl , isi1) = η∅+ηl(tt − l) +η1(isi1) +ηl ,1(t− tl , isi1)

I The plots of the model terms, ηl(tt − l), η1(isi1) and
ηl ,1(t − tl , isi1) were obtained after refitting Model 1 to
the full data set.
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The functional forms: Uni-variate terms
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The functional forms: Interaction term
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Intensities of Models 1 and 2
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Conclusions

I We have now a “general” estimation method for the
conditional intensity of real spike trains.

I The method is implemented in the STAR (Spike Train
Analysis with R) package available on CRAN (the
Comprehensive R Archive Network).

I An ongoing systematic study (see the STAR web site)
shows:

I Most of our discharges can be explained by models
involving t − tl and isi1.

I “Irregular bursty” discharges require an additive model
like Model 2 here while “Regular bursty” ones require an
interaction term like in Model 1 here.

I Some neurons require functional coupling with other
neurons.

I Analysis of odour responses will follow soon.

http://cran.at.r-project.org/web/packages/STAR/index.html
http://cran.at.r-project.org/
http://sites.google.com/site/spiketrainanalysiswithr/
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